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Dynamics of Open Chains
• The motions of open-chain robots are considered taking into account the forces and torques that

cause them.

• Just as a distinction was made between a robot’s FK and IK, it is also customary to distinguish
between a robot’s forward dynamics (FD) and inverse dynamics (ID).

• The associated dynamic equations - also referred to as the equations of motion - are a set of
second-order differential equations of the form. Especially, the ID is finding the joint forces and
torques ⌧ corresponding to the robot’s state and a desired acceleration.

ID: ⌧ = M(✓)✓̈ + h(✓, ✓̇)

where ✓ 2 <n is the vector of joint variables, ⌧ 2 <n is the vector of joint forces and torques,
M(✓) 2 <n⇥n is a symmetric positive-definite mass matrix, and h(✓, ✓̇) 2 <n are forces that lump
together centripetal, Coriolis, gravity, and friction terms that depend on ✓ and ✓̇.

• The FD is determining the robot’s acceleration ✓̈ given the state (✓, ✓̇) and the joint forces and
torques,

FD: ✓̈ = M�1(✓)(⌧ � h(✓, ✓̇))
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• A robot’s dynamic equations are typically derived in one of two ways: by the Newton-Euler for-
mulation for a rigid body or by the Lagrangian dynamics formulation derived from the kinetic
and potential energy of the robot.

• The Lagrangian formalism is conceptually elegant and quite effective for robots with simple struc-
tures, e.g., with three or fewer degrees of freedom. The calculations can quickly become cumber-
some for robots with more degrees of freedom.

• For general open chains, the Newton-Euler formulation leads to efficient recursive algorithms for
both the inverse and forward dynamics that can also be assembled into closed-form analytic ex-
pressions for, e.g., the mass matrix M(✓) and the other terms in the dynamics equation.
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1 Lagrangian Formulation

1.1 Basic Concepts and Motivating Examples
• The first step in the Lagrangian formulation of dynamics is to choose a set of independent (or

generalized) coordinates q 2 <n that describes the system’s configuration.

• Once generalized coordinates have been chosen, these then define the generalized forces f 2 <n.

• The forces f and the coordinate rates q̇ are dual to each other in the sense that the inner product
fT q̇ corresponds to power.

• A Lagrangian function L(q, q̇) is then defined as the overall system’s kinetic energy K(q, q̇) minus
the potential energy P(q)

L(q, q̇) = K(q, q̇)� P(q)

• The equations of motion can now be expressed in terms of the Lagrangian as follows:

f =
d

dt

@L
@q̇

� @L
@q
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• Consider a particle of mass m constrained to move on a vertical line.

• The particle’s configuration space is this vertical line, and a natural choice for a generalized co-
ordinate is the height of the particle, which we denote by the scalar variable x 2 <. Suppose that
the gravitational force mg acts downward, and an external force f is applied upward. By New-
ton’s second law, the equation of motion for the particle is

mẍ = f �mg

• Let us apply the Lagrangian formalism to derive the same result.

• The kinetic energy is 1
2mẋ2, the potential energy is mgx, and the Lagrangian is

L(x, ẋ) = 1

2
mẋ2 �mgx

The equation of motion is then given by

f =
d

dt

@L
@ẋ

� @L
@x

= mẍ+mg

224



• Let us derive the dynamic equations for a planar 2R open chain moving in the presence of gravity.

• The chain moves in the x̂-ŷ-plane, with gravity g acting in the �ŷ direction.

• Two links are modeled as point masses m1 and m2 concentrated at the ends of each link.

• The position and velocity of the link-1 mass are then given by

"
x1

y1

#
=

"
L1 cos ✓1

L1 sin ✓1

#
and

"
ẋ1

ẏ1

#
=

"
�L1 sin ✓1

L1 cos ✓1

#
✓̇1

while those of the link-2 mass are given by

"
x2

y2

#
=

"
L1 cos ✓1 + L2 cos(✓1 + ✓2)

L1 sin ✓1 + L2 sin(✓1 + ✓2)

#
and

"
ẋ2

ẏ2

#
=

"
�L1 sin ✓1 � L2 sin(✓1 + ✓2) �L2 sin(✓1 + ✓2)

L1 cos ✓1 + L2 cos(✓1 + ✓2) L2 cos(✓1 + ✓2)

#"
✓̇1

✓̇2

#

• If the joint coordinates ✓ = (✓1, ✓2) are chosen as the generalized coordinates, the generalized forces
⌧ = (⌧1, ⌧2) then correspond to joint torques (since ⌧T ✓̇ corresponds to power).
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• The Lagrangian L(✓, ✓̇) is of the form

L(✓, ✓̇) =
2X

i=1

(Ki � Pi)

where the link kinetic energy terms are

K1 =
1

2
m1(ẋ

2
1 + ẏ21) =

1

2
m1(L

2
1✓̇

2
1 sin

2 ✓1 + L2
1✓̇

2
1 cos

2 ✓1) =
1

2
m1L

2
1✓̇

2
1

K2 =
1

2
m2(ẋ

2
2 + ẏ22) =

1

2
m2

⇣
(L2

1 + L2
2 + 2L1L2 cos ✓2)✓̇

2
1 + 2(L2

2 + L1L2 cos ✓2)✓̇1✓̇2 + L2
2✓̇

2
2

⌘

and the link potential energy terms are

P1 = m1gy1 = m1gL1 sin ✓1

P2 = m2gy2 = m2g(L1 sin ✓1 + L2 sin(✓1 + ✓2))

• The Euler-Lagrange equations for this example are of the form

⌧1 =
d

dt

@L
@✓̇1

� @L
@✓1

= (m1L
2
1 +m2(L

2
1 + 2L1L2 cos ✓2 + L2

2))✓̈1 +m2(L1L2 cos ✓2 + L2
2)✓̈2 �m2L1L2 sin ✓2(2✓̇1✓̇2 + ✓̇22)

+ (m2 +m2)L1g cos ✓1 +m2L2 cos(✓1 + ✓2)

⌧2 =
d

dt

@L
@✓̇2

� @L
@✓2

= m2(L1L2 cos ✓2 + L2
2)✓̈1 +m2L

2
2✓̈2 +m2L1L2✓̇

2
1 sin ✓2 +m2gL2 cos(✓1 + ✓2)
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• We can gather terms together into an equation of the form

⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓)

with

M(✓) =

"
m1L2

1 +m2(L2
1 + 2L1L2 cos ✓2 + L2

2) m2(L1L2 cos ✓2 + L2
2)

m2(L1L2 cos ✓2 + L2
2) m2L2

2

#
inertia matrix

c(✓, ✓̇) =

"
�m2L1L2 sin ✓2(2✓̇1✓̇2 + ✓̇22)

m2L1L2✓̇21 sin ✓2

#
Coriolis and centrpetal torques

g(✓) =

"
(m2 +m2)gL1 cos ✓1 +m2L2 cos(✓1 + ✓2)

m2gL2 cos(✓1 + ✓2)

#
gravitational torques

• These reveal that the equations of motion are linear in ✓̈, quadratic in ✓̇, and trigonometric in ✓.
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• In (x, y) coordinates, the accelerations of the masses are written simply as second time-derivatives
of the coordinates, e.g., (ẍ2, ÿ2).

"
ẋ2

ẏ2

#
=

"
�L1✓̇1s1 � L2(✓̇1 + ✓̇2)s12

L1✓̇1c1 + L2(✓̇1 + ✓̇2)c12

#
!

"
ẍ2

ÿ2

#
=

"
�L1✓̈1s1 � L1✓̇21c1 � L2(✓̈1 + ✓̈2)s12 � L2(✓̇1 + ✓̇2)2c12

L1✓̈1c1 � L1✓̇21s1 + L2(✓̈1 + ✓̈2)c12 � L2(✓̇1 + ✓̇2)2s12

#

• Accelerations are expressed as a sum of terms that are linear in the second derivatives of joint
variables, ✓̈, and quadratic of the first derivatives of joint variables, ✓̇T ✓̇.

• Quadratic terms containing ✓̇2i are called centripetal terms, and quadratic terms containing ✓̇i✓̇j
i 6= j, are called Coriolis terms.

• In other words, ✓̈ = 0 does not mean zero acceleration of the masses, due to the centripetal and
Coriolis terms.

• Assume ✓1 = 0, ✓2 = ⇡/2, i.e., s1 = 0, c1 = 1, s12 = 1 andd c12 = 0 and also ✓̈ = 0, the acceleration of
m2 can be written
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"
ẍ2

ÿ2

#
=

"
�L1✓̇21

�L2(✓̇1 + ✓̇2)2

#
=

"
�L1✓̇21

�L2✓̇21 � L2✓̇22

#
+

"
0

�2L2✓̇1✓̇2

#

=

"
�L1✓̇21

�L2✓̇21

#
+

"
0

�L2✓̇22

#
+

"
0

�2L2✓̇1✓̇2

#

• Figure shows the centripetal acceleration acent1 = (�L1✓̇21,�L2✓̇21) when ✓̇2 = 0, the centripetal ac-
celeration acent2 = (0,�L2✓̇22) when ✓̇1 = 0, and the Coriolis acceleration acor = (0,�2L2✓̇1✓̇2) when
both ✓̇1 > 0 and ✓̇2 > 0.
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1.2 General Formulation
• For general n-link open chains, the first step is to select a set of generalized coordinates ✓ 2 <n

for the configuration space of the system.

• Once ✓ has been chosen and the generalized forces ⌧ identified, the next step is to formulate the
Lagrangian L(✓, ✓̇)

L(✓, ✓̇) = K(✓, ✓̇)� P(✓)

• For rigid-link robots the kinetic energy can always be written in the form

K(✓, ✓̇) =
1

2
✓̇TM(✓)✓̇ =

1

2

nX

i=1

nX

j=1

mij(✓)✓̇i✓̇j

where mij(✓) is the (i, j)th element of the n⇥ n mass matrix M(✓)

• The dynamic equations are analytically obtained by evaluating the righthand side of

⌧i =
d

dt

@L
@✓̇i

� @L
@✓i

i = 1, 2, · · · , n

=
nX

j=1

mij(✓)✓̈j +
nX

j=1

nX

k=1

�ijk(✓)✓̇j ✓̇k +
@P
@✓i

where the �ijk(✓), known as the Christoffel symbols of the first kind, are defined as follows:

�ijk(✓) =
1

2

✓
@mij

@✓k
+

@mik

@✓j
� @mjk

@✓i

◆
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• This shows that the Christoffel symbols, which generate the Coriolis and centripetal terms c(✓, ✓̇),
are derived from the mass matrix M(✓).

• By letting g(✓) = @P
@✓ , we can see explicitly that the Coriolis and centripetal terms are quadratic

in the velocity by using the form

⌧ = M(✓)✓̈ + ✓̇T�(✓)✓̇ + g(✓)

where �(✓) is an n⇥ n⇥ n matrix and the product ✓̇T�(✓)✓̇ should be interpreted as follows:

✓̇T�(✓)✓̇ =

2

664

✓̇T�1(✓)✓̇
...

✓̇T�n(✓)✓̇

3

775

where �i(✓) is an n⇥ n matrix with (j, k)th entry �ijk.

• It is also common to see the dynamics written as

⌧ = M(✓)✓̈ + C(✓, ✓̇)✓̇ + g(✓)

where C(✓, ✓̇) 2 <n⇥n is called the Coriolis and centripetal matrix, with (i, j)th entry

cij(✓, ✓̇) =
nX

k=1

�ijk(✓)✓̇k

• The Coriolis and centripetal matrix is used to prove the following passivity property (Proposition
8.1), which can be used to prove the stability of certain robot control laws.
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Proposition 8.1. The matrix Ṁ(✓)� 2C(✓, ✓̇) 2 <n⇥n is skew symmetric

Proof. The (i, j)th component of Ṁ(✓)� 2C(✓, ✓̇) is

ṁij(✓)� 2cij(✓, ✓̇) =
nX

k=1

@mij

@✓k
✓̇k �

@mij

@✓k
✓̇k �

@mik

@✓j
✓̇k +

@mjk

@✓i
✓̇k

=
nX

k=1

✓
@mjk

@✓i
� @mik

@✓j

◆
✓̇k

By switching the indices i and j, it can be seen that

ṁji(✓)� 2cji(✓, ✓̇) = �(ṁij(✓)� 2cij(✓, ✓̇))

thus proving that (Ṁ(✓)� 2C(✓, ✓̇))T = �(Ṁ(✓)� 2C(✓, ✓̇)) as claimed.
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1.3 Understanding the Mass Matrix

• The kinetic energy 1
2 ✓̇

TM(✓)✓̇ is a generalization of the familiar expression 1
2mvTv for a point mass.

• To visualize the direction dependence of the effective mass, we can map a unit ball of joint accel-
erations { ✓̈ | ✓̈T ✓̈ = 1 } through the mass matrix M(✓) to generate a joint force-torque ellipsoid
when the mecahnism is at rest ✓̇ = 0.

• Assume L1 = L2 = m1 = m2 = 1 of 2R arm at two different joint configurations as shown in the
figure.
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• The torque ellipsoid can be interpreted as a direction-dependent mass ellipsoid: the same joint
acceleration magnitude k✓̈k requires different joint torque magnitudes k⌧k depending on the ac-
celeration direction.

• The directions of the principal axes of the mass ellipsoid are given by the eigenvectors vi of M(✓)
and the lengths of the principal semi-axes are given by the corresponding eigenvalues �i.

• The acceleration ✓̈ is only a scalar multiple of ⌧ when ⌧ is along a principal axis of the ellipsoid.

• It is easier to visualize the mass matrix if it is represented as an effective mass of the end-effector,
since it is possible to feel this mass directly by grabbing and moving the end-effector.

• If you grabbed the endpoint of the 2R robot, depending on the direction you applied force to it,
how massy would it feel?

• Let us denote the effective mass matrix at the end-effector as ⇤(✓), and the velocity of the end-
effector as V = (ẋ, ẏ).

• The kinetic energy of the robot must be the same regardless of the coordinates we use, so

1

2
✓̇TM(✓)✓̇ =

1

2
V T⇤(✓)V

• Assuming the Jacobian J(✓) satisfying V = J(✓)✓̇ is invertible, the above can be rewritten as
follows:

V T⇤V = (J�1V )TM(J�1V ) = V T (J�TMJ�1)V

• In other words, the end-effector mass matrix is

⇤(✓) = J�T (✓)M(✓)J�1(✓)
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• Figure shows the end-effector mass ellipsoids, with principal-axis directions given by the eigen-
vectors of ⇤(✓) and principal semi-axis lengths given by its eigenvalues, for the same two 2R robot
configurations as in Figure 8.3.

• The endpoint acceleration (ẍ, ÿ) is a scalar multiple of the force (fx, fy) applied at the endpoint
only if the force is along a principal axis of the ellipsoid.

• Unless ⇤(✓) is of the form cI, where c > 0 is a scalar and I is the identity matrix, the mass at
the endpoint feels different from a point mass. (haptic display)
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1.4 Lagrangian Dynamics vs. Newton-Euler Dynamics
• Using the tools we have developed so far, the Newton-Euler formulation allows computationally

efficient computer implementation, particularly for robots with many degrees of freedom, without
the need for differentiation.

• The resulting equations of motion are, and must be, identical with those derived using the energy-
based Lagrangian method.
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