
3 Equivalent Gain Analysis using the Root Locus

• Typical examples of memoryless nonlinearities are listed as saturation, relay, relay with dead
zone, gain with dead zone, preloaded spring, coulomb plus viscous friction, and quantization.

• For given memoryless nonlinearities, the technique is to replace the memoryless nonlinearity by
an equivalent gain K, and a root locus is plotted versus this gain.
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• (Example 9.6) Consider the system with saturation. Determine the stability properties of the sys-
tem using the root-locus technique ?

1. The root locus with saturation removed is given by the figure.

2. At K = 1, the damping ratio is ⇣ = 0.5. As the gain is reduced, the locus shows that the roots
move toward the origin of the s-plane with less and less damping.
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3. For r = 2, 4, 6, 8, 10, 12, the step responses are shown in the following figure. As long as the
signal entering the saturation remains less than 0.4, the system will be linear and should
behave according to the roots at ⇣ = 0.5. However, as the input gets larger, the response has
more and more overshoot and slower and slower recovery.

4. This can be explained that larger and larger input signals correspond to smaller and smaller
effective gain K, as seen in Fig. 9.10

5. As K decreases, the closed-loop poles move closer to the origin and have a smaller damping
⇣. This results in longer rise and settling times, increases overshoot, and greater oscillatory
response.
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• (Example 9.7) Consider the system with a saturation nonlinearity. Determine whether the system
is stable?

1. The root locus for the system, excluding the saturation, is plotted. Imaginary axis crossing
occurs at !o = 1[rad/s] and K = 1

2.
2. The system is stable for large gains but unstable for smaller gains.

3. If K = 2, ⇣ = 0.5 for smaller reference input signals. However, as the reference input size gets
larger, the equivalent gain would get smaller due to the saturation, and the system would
be expected to become less well damped. Finally the system would be expected to become
unstable at some point for large inputs.
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4. Step response with K = 2 for input steps of size r = 1, 2, 3, 3.4 are shown in Fig. 9.13.
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• (Example 9.8) Consider the system. Determine whether the system is stable and find the ampli-
tude and frequency of the limit cycle. Modify the controller design to minimize the effect of limit-
cycle oscillations.

1. The denominator term s2 + 0.2s + 1 = 0 implies ! = 1 and ⇣ = 0.1. The root locus for this
system versus K, excluding the saturation, is sketched.

2. The imaginary axis crossing can be verified to be at !0 = 1, K = 0.2, thus a gain of K = 0.5
is enough to force the roots of the resonant mode into the RHP, as shown by the dots.
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3. Plots of the step responses with K = 0.5 for three steps of size r = 1, 4, 8 are shown. Due to
saturation effect, the effective gain is lowered to K = 0.2 from K = 0.5 and then stop growing!

4. The error builds up to a fixed amplitude and then starts to oscillate at a fixed amplitude.
The oscillations have a frequency of 1 [rad/s] and hold constant amplitude regardless of the
step sizes of the input. ! limit cycle

5. In order to prevent the limit cycle, the locus has to be modified by compensation so that
no branches cross into the RHP. A remedy is to place compensation zeros near the lightly
damped poles as shown in Fig. 9.17

6. For example, let us design the compensator as follows:

Dc(s) = 123
s2 + 0.18s+ 0.81

(s+ 10)2
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where 123 has been selected to make the compensation’s DC gain equal to unity.
7. This notch compensation attenuates inputs in the vicinity of !2

n = 0.81 or !n = 0.9, so that
any input from the plant resonance is attenuated and is thus prevented from detracting from
the stability of the system. (see Figs. 9.18 and 9.19)
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• (9.3.1) Integrator Antiwindup

1. Consider the feedback system. Suppose a given reference step is more than large enough to
cause the actuator to saturate at umax.

2. The integrator continues integrating the error e and the signal uc keeps growing. However,
the input to the plant is stuck at its maximum value, namely, u = umax.

3. The solution to this problem is an integrator antiwindup circuit, which turns off the integral
action when the actuator saturates.

4. The effect of the antiwindup is to reduce both the overshoot and the control effort in the feed-
back system.

5. Effect of the saturation is to open the feedback loop and leave the open-loop plant with a
constant input and the controller as an open-loop system with the system error as input.

6. If the controller is implemented digitally, by including a statement such as “if |u| = umax,
kI = 0. Fig. 9.21(a) is somewhat easier to understand. Fig. 9.21(b) is easier to implement.
Fig. 9.21(c) shows block diagram. Fig. 9.21(d) : the integrator part becomes the first-order
lag, where Ka is the antiwindup gain chosen to be large enough that the antiwindup circuit
keeps the input to the integrator small under all error conditions.
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7. (Example 9.9) Consider a plant and a PI controller

G(s) =
1

s
Dc(s) = kP +

kI
s

= 2 +
4

s

in the unity feedback configuration. The input to the plant is limited to ±1.
a) With Ka = 10 > KI = 4, let us make simulation as shown in Fig. 9.22

b) Fig. 9.23 shows the step response and the corresponding control effort.

c) The system with antiwindup has substantially less overshot and less control effort.
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