Multi-Robot Coordination Algorithm to Direct-Intercept and Surround a Target

Sajjad Manzoor and Youngjin Choi

Abstract— We have proposed an algorithm for multi-robot path planning in order to surround a stationary or dynamic target by using a phase neural oscillator. The self-collision between the robots as well as collision with obstacle are avoided. The robots reach the target keeping equally distributed angles around it.

Let us consider n robots having diameter D. With i-th robot at position $(x_i, y_i) \in \mathbb{R}^2$, radial distance with respect to target at $(x_T, y_T) \in \mathbb{R}^2$ is $r_i \in \mathbb{R}$. The target is single, and it is either static or moving in straight line with a constant velocity. The main purpose of the research is to implement the synchronized motion of the robots towards the target while avoiding self-collision, and obstacles, and the robots should have the phase difference of $\frac{2\pi}{n}$ while reaching the target.

A target moving with V_T is proposed as stationary virtual target (x_{TV}, y_{TV}) and taking velocity of robots $V > V_T$. From above figure, since $\theta_{T-i} = \sin^{-1} \left(\frac{V_T \sin(\theta_{T-i})}{V} \right)$ satisfied, thus we have:

$$S_T = \max(S_{T-i}) = \frac{r_i \sin(\theta_{T-i})}{\sin(\frac{2\pi}{n} - \theta_{T-i} - \theta_{T-i})}$$

Then radial distance of robots from virtual target is $r_{T-i} = \sqrt{S_T^2 + r_i^2 - S_T r_i \cos(\theta_i)}$ and the time to go as $t_{max} = \frac{S_T}{V}$. For static target i.e., $V_T = 0$, $r_{T-i} = r_i$ and $(x_{TV}, y_{TV}) = (x_T, y_T$).

The angular coordinate of i-th robot around the virtual target (x_{TV}, y_{TV}) is $\{ \theta_i \in \mathbb{R} | 0 < \theta_i < 2\pi m, m \text{ is an integer} \}$ such that $\theta_1 < \theta_2 < \cdots < \theta_n$. For i-th robot the estimated new value of θ_i is given as follows:

$$\theta_i(t+1) = \theta_i(t) + \left(\sum_{j=1}^{n} W_{ij} \sin(\theta_j(t) - \theta_i(t) - \phi_{ji}(t+1)) + \zeta \right) \Delta t$$

where

- $\phi_{ji}(t+1)$: the desired phase difference between jth and ith robot:

$$\phi_{ji}(t+1) = \phi_{ji}(t) + \left(\frac{2\pi(j-i)}{n} - \phi_{ji}(t) \right) \left(\frac{1}{1 + e^{-X_{ji}(t)}} \right)$$

$$\phi_{ij}(t+1) = -\phi_{ji}(t+1)$$

This work was supported in part by the National Research Foundation (NRF-2013R1A1A2010192), and in part by the BK21 Plus Program (Future-oriented innovative brain raising type, 22A20130012806) funded by the Ministry of Education (MOE) of Korea, Republic of Korea.

The authors are with the Department of Electronic Systems Engineering, Hanyang University, Ansan, 426-791, South Korea, email: sajjadm@hotmail.com, cyj@hanyang.ac.kr.

References