2 Rotations and Angular Velocities

2.1 Rotation Matrices

e Among nine entries in the rotation matrix R, only three can be chosen independently.

1. The unit norm condition: I, 93, 2, are all unit vectors, i.e.,

2 2 2 _

it T g =1
2 2 2

TTg + 75 + 15 =1,

rly o gy =1
2. The orthogonality condition: Z;, - 9, =2y - 2, =4, - 2, =0

r11712 + 721722 4+ 131732 = 0
T11713 + 721723 + 131733 = 0

12713 + 22793 + 732733 = 0
e These six constraints can be expressed more compactly as a single set of constraints on R,
R'R=1

e The frame is right-handed if z;, x 3, = %,, and the left-handed if 2, x ¢, = —Z,. Thus it can be

49



obtained by using the determinant

det R =1 — det R = 2/ (&, x 4») = 3/ 3, =1 right-handed
det R = —1 — det R = 3} (Zy x §) = =41 % = —1  left-handed
Definition 3.1. The special orthogonal group SO(3), also known as the group of rotation matrices, is
the set of all 3 x 3 real matrices R that satisfy
1. RTR=1
2. det R=1
Definition 3.2. The special orthogonal group SO(2) is the set of all 2 x 2 real matrices R that satisfy
1. RTR=1
2. det R=1
From the definition it follows that every R € SO(2) can be written

B cosf) —sinf
sinff cosf

11 T12
R =

21 T22

where 6 € [0, 27).
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Properties of Rotation Matrices

e The sets of rotation matrices SO(2) and SO(3) are called groups because they satisfy the proper-
ties required of a mathematical group.

e Specifically, a group consists of a set of elements and an operation on two elements (matrix mul-
tiplication for SO(n)) such that, for all A, B in the group, the following properties are satisfied:

— closure: AB is also in the group.
- associativity: (AB)C = A(BC).
- identity element existence: There exists an element / in the group.

— inverse element existence: 3 an element A~! in the group > AA ' =A"14A=1.

e More specifically, SO(n) groups are also called matrix Lie groups (where “Lie” is pronounced “Lee”)
because the elements of the group form a differentiable manifold.

Proposition 3.1. The inverse of a rotation matrix R € SO(3) is also a rotation matrix, and it is equal
to the transpose of R, i.e., R~' = R”.

Proposition 3.2. The product of two rotation matrices is a rotation matrix.

Proposition 3.3. Multiplication of rotation matrices is associative, (Ri1Rs)R3 = Ri(RyR3), but generally
not commutative, R1 Ry # Ry R;.

Proposition 3.4. For any vector x € R and R € SO(3), the vector y = Rx has the same length as .
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Uses of Rotation Matrices

ia ib . 5\(c
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Figure 3.7: The same space and the same point p represented in three different
frames with different orientations.

There are three major uses for a rotation matrix R:
1. to represent an orientation;
2. to change the reference frame in which a vector or a frame is represented; (operator)
3. to rotate a vector or a frame. (operator)

For a point p in the space, if a fixed space frame {s} is aligned with {a}, then the orientations of the
three frames relative to {s} and the location of the point p in these frames can be written

1 00 0 —1 0 0 —1 0 1 1 0
Ra: 010 Rb: 1 0 0 Rc: 0 0 —1 Pa = 1 Dy = —1 Pe = —1
0 01 0 0 1 1 0 O 0 0 —1

Note that {b} is obtained by rotating {a} about Z, by 90°, and {c} is obtained by rotating {b} about ,
by —90°.
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Representing an orientation

ia ib . f(c
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Figure 3.7: The same space and the same point p represented in three different
frames with different orientations.

When we write R., we are implicitly referring to the orientation of frame {c} relative to the fixed
frame {s}.

Its more explicit form is R,.: we are representing the frame {c} of the second subscript relative
to the frame {s} of the first subscript. For example, R;. is the orientation of {c} relative to {b}.

If there is no possibility of confusion regarding the frames involved, we may simply write R.

Inspecting Figure 3.7, we see that

0 -1 0 0O 0 1
RaC: O O —1 Rca - —1 O O
1 0 O 0 -1 0

A simple calculation shows that R,.R. = I; that is, R,. = R_! or, equivalently, from Proposition
3.3, R, = RL.

In fact, for any two frames {d} and {e},

Re =R} =R,
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Changing the reference frame
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Figure 3.7: The same space and the same point p represented in three different
frames with different orientations.

e The rotation matrix R,, represents the orientation of {b} in {a}, and R;. represents the orienta-
tion of {c} in {b}.

e A straightforward calculation shows that the orientation of {c} in {a} can be computed as
Ry = Rap Ry

where R, acts like an operator that changes the reference frame from {b} to {a} and R;. is a
representation of the orientation.

R.. = Ry Ry = change reference frame from {b} to {a} (R;.).

e Subscript cancellation rule
Ry Rye = RyRy. = Ry
Rapps = Rypy = Pa

where the reference frame of a vector can be changed by a rotation matrix using the subscript
cancellation rule.
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Rotating a vector or a frame
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Figure 3.8: A coordinate frame with axes {&,¥,2} is rotated by 6 about a unit axis
@ (which is aligned with —§ in this figure). The orientation of the final frame, with

axes {&',9',2'}, is written as R relative to the original frame.

e Figure 3.8 shows a frame {c} initially aligned with {s} with axes {z,y, 2}.

o If we rotate the frame {c} about a unit axis @ by an amount 6, the new frame, {c’} has coordinate
axes {1',7',2'}. The rotation matrix R = R,. represents the orientation of {c’} relative to {s}.

e Emphasizing our view of R as a rotation operator, we can write for w = (w1, w9, w3)

cyp + (2)%(1 — C@) @1(:)2(1 — Cg) — W3Sy @1(:)3(1 — C@) + Wy Sy
R = ROt((j), 9) = {1}1(:)2(1 — Cg) + @389 cop + (2)%(1 — CG) (:Jg(f)g(l - Cg) - (2)189
(:)1(2}3(1 — 09) — @289 (1)2(;}3(1 — CQ) + @159 Co + (2)%(1 — CQ)
where sy =sinf and ¢y = cosf. Note that Rot(w, ) = Rot(—w, —0).

e Typical examples of rotation operations about coordinate frame axes are

1 0 0 cosf) 0 siné cosf) —sinf 0
Rot(z,0) = [0 cosf —sinf Rot(y,0) = 0 1 0 Rot(2,0) = |sinf® cos® 0
0 sinf cosé —sinf 0 cosf 0 0 1
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Figure 3.9: (Top) The rotation operator R = Rot(2,90°) gives the orientation of
the right-hand frame in the left-hand frame. (Bottom) On the left are shown a fixed
frame {s} and a body frame {b}, which can be expressed as R.. The quantity RRs
rotates {b} by 90° about the fixed-frame axis Zs to {b'}. The quantity R, R rotates
{b} by 90° about the body-frame axis 2z to {b"}.

e To specify whether the axis of rotation is expressed in {s} or {b}, let us {b’} be the new frame
after a rotation by 6 about &, =& and {b”} be the new frame after a rotation by ¢ about &, =

e Representations of these new frames can be calculated as

R,y = rotate by R in {s} frame (R,;) = RRy,
Rg» = rotate by R in {b} frame (R,) = R4R

e Premultiplying by R = Rot(w,0) yields a rotation about an axis @ considered to be in the fixed
frame, and postmultiplying by R yields a rotation about & considered as being in the body frame.
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