
2 Numerical Inverse Kinematics
• Iterative numerical methods can be applied if the IK equations do not admit analytic solutions.

• Even in cases where an analytic solution does exist, numerical methods are often used to improve
the accuracy of these solutions.

• There exist a variety of iterative methods for finding the roots of a nonlinear equation, and our
aim is to develop ways in which to transform the IK equations so that they become amenable to
existing numerical methods.

• An approach fundamental to nonlinear root-finding will be Newton-Raphson method.

• We seek the closest approximate solution; or, conversely, an infinity of IK solutions exists (i.e.,
if the robot is kinematically redundant) and we seek a solution that is optimal with respect to
some criterion.
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2.1 Newton-Raphson Method
• To solve the equation g(✓) = 0 numerically for a given differentiable function g : <n ! <n, assume
✓0 2 <n is an initial guess for the solution.

• Write the Taylor expansion of g(✓) at ✓ = ✓0 and truncate it at first order:

g(✓) = g(✓0) +
@g

@✓T
(✓0)(✓ � ✓0) + h.o.t where

@g

@✓T
(✓0) =

@

2

664

g1
...
gn

3

775

@
h
✓1 . . . ✓n
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2

664

@g1
@✓1

(✓) · · · @g1
@✓n

(✓)
... ...

@gn
@✓1

(✓) · · · @gn
@✓n

(✓)

3

775

• Keeping only the terms up to first order, set g(✓) = 0 and solve for ✓ to obtain

✓ = ✓0 �
✓

@g

@✓T
(✓0)

◆�1

g(✓0)

• Using this value of ✓ as the new guess for the solution and repeating the above, we get the fol-
lowing iteration:

✓k+1 = ✓k �
✓

@g

@✓T
(✓k)

◆�1

g(✓k)

• The above iteration is repeated until some stopping criterion is satisfied.
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2.2 Numerical Inverse Kinematics Algorithm
• For the Newton-Raphson method, let us define g(✓d) = xd � f(✓d) to find joint coordinates ✓d 2 <n

from the desired end-effector coordinate xd 2 <m

g(✓d) = xd � f(✓d) = 0

• Given an initial guess ✓0 which is close to a solution ✓d, the kinematics can be expressed as the
Taylor expansion

xd = f(✓d) = f(✓0) +
@f

@✓T

����
✓=✓0

(✓d � ✓0) + h.o.t

• Let us define the Jacobian J(✓0) =
@f
@✓T

���
✓=✓0

, then we have the approximate and iterative solution

✓d = ✓0 + J+(✓0)(xd � f(✓0)) ! ✓k+1 = ✓k + J+(✓k)(xd � f(✓k))

where ✓k ! ✓d satisfying xd = f(✓d), as k ! 1.
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Pseudoinverse

Moore-Penrose pseudoinverse J+ : consider the equation z = Jy with y 2 <n and z 2 <m

• J is square and full rank, J�1 is obtained using LU decomposition

• J is fat (n > m) and full rank, J+ = JT (JJT )�1 (right inverse) minimizes the two-norm kyk2:

min
1

2
yTy subject to z = Jy

The optimization brings two-norm minimum solution

H =
1

2
yTy + �T (z � Jy)

@H

@y
= y � JT� = 0

z = Jy = JJT� � = (JJT )�1z y = JT� = JT (JJT )�1z = J+z

If n > m then the solution is the smallest joint variable change (in the two-norm sense) that
exactly satisfies Equation z = Jy

• J is thin (tall) (n < m) and full rank, J+ = (JTJ)�1JT (left inverse) minimizes the error two-norm
kz � Jyk2

H =
1

2
(z � Jy)T (z � Jy)

@H

@y
= �JTz + JTJy = 0 y = (JJT )�1JTz = J+z

If n < m then the solution may not exactly satisfy Equation z = Jy, but it satisfies this condition
as closely as possible in a least-squares sense.
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Numerical IK using Newton-Raphson Method

1. Initialization: Given xd 2 <m and an initial guess ✓0 2 <n, set i = 0

2. Set e = xd � f(✓i), while kek > ✏ for some small ✏

• Set ✓i+1 = ✓i + J+(✓i)e

• Increment i
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• To modify this algorithm to work with a desired end-effector configuration represented as Tsd 2
SE(3) instead of a coordinate vector xd, we can replace the coordinate Jacobian J with the end-
effector body Jacobian Jb 2 <6⇥n.

• Note that the vector e = xd � f(✓i), representing the direction from the current guess (evaluated
through the forward kinematics) to the desired end-effector configuration, cannot simply be re-
placed by Tsd � Tsb(✓i); the pseudoinverse of Jb should act on a body twist Vb 2 <6.

• To find the right analogy, we should think of e = xd � f(✓i) as a velocity vector which, if followed
for unit time, would cause a motion from f(✓i) to xd.

• Similarly, we should look for a body twist Vb which, if followed for unit time, would cause a motion
from Tsb(✓i) to the desired configuration Tsd.

• To find this Vb, we first calculate the desired configuration in the body frame,

Tbd(✓
i) = T�1

sb (✓i)Tsd = Tbs(✓
i)Tsd

• Then Vb is determined using the matrix logarithm,

[Vb] = log Tbd(✓
i).

This leads to the following IK algorithm, which is analogous to the above coordinate-vector algorithm:

1. Initialization: Given Tsd 2 SE(3) and an initial guess ✓0 2 <n, set i = 0

2. Set [Vb] = log(T�1
sb (✓i)Tsd), while k!bk > ✏! or kvbk > ✏v for some small ✏!, ✏v:

• Set ✓i+1 = ✓i + J+
b (✓i)Vb

• Increment i
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Example 6.1. (Planar 2R robot). Now we apply the body Jacobian Newton-Raphson IK algorithm to

the 2R robot. Each link is 1m in length, and we would like to find the joint angles that place the tip

of the robot at (xd, yd) = (0.366m, 1.366m), which corresponds to ✓d = (30�, 90�) and

Tsd =

2

666664

�0.5 �0.866 0 0.366

0.866 �0.5 0 1.366

0 0 1 0

0 0 0 1

3

777775

• The forward kinematics, expressed in the end-effector frame, is given by

M =

2

666664

1 0 0 2

0 1 0 0

0 0 1 0

0 0 0 1

3

777775
B1 =

2

66666666664

0

0

1

0

2

0

3

77777777775

B2 =

2

66666666664

0

0

1

0

1

0

3

77777777775
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• Our initial guess at the solution is ✓0 = (0�, 30�), and we specify an error tolerance of ✏! =
0.001rad (or 0.057�) and ✏v = 10�4m (100 microns).

• The progress of the Newton-Raphson method is illustrated in the table below

• The iterative procedure converges to within the tolerances after three iterations.

• The constant body velocity Vb that takes the initial guess to {goal} in one second is a rotation
about the screw axis indicated in the figure.
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3 Inverse Velocity Kinematics
• One solution for controlling a robot so that it follows a desired end-effector trajectory Tsd(t) is to

calculate the IK ✓d(k�t) at each discrete timestep k, then control the joint velocities ✓̇ as follows

✓̇ =
✓d(k�t)� ✓((k � 1)�t)

�t

This amounts to a feedback controller since the desired new joint angles ✓d(k�t) are being com-
pared with the most recently measured actual joint angles ✓((k � 1)�t) in order to calculate the
required joint velocities.

• Another option that avoids the computation of IK is to calculate the required joint velocities ✓̇
directly from the relationship ✓̇ = J+Vd, The desired twist Vd(t) can be chosen to be T�1

sd (t)Ṫsd(t)
(the body twist of the desired trajectory at time t) or Ṫsd(t)T

�1
sd (t) (the spatial twist), depending on

whether the body Jacobian or space Jacobian is used; however small velocity errors are likely to
accumulate over time, resulting in increasing position error. Thus, a position feedback controller
should choose Vd(t) so as to keep the end-effector following Tsd(t) with little position error.
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Pseudoinverse

The use of the pseudoinverse J+(✓) returns joint velocities ✓̇ minimizing the two-norm k✓̇k

min
1

2
✓̇T ✓̇ subject to Vd = J ✓̇

H =
1

2
✓̇T ✓̇ + �T (Vd � J ✓̇)

@H

@✓̇
= ✓̇ � JT� = 0

Vd = J ✓̇ = JJT�

� = (JJT )�1Vd

✓̇ = JT� = JT (JJT )�1Vd = J+Vd
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Inertia-weighted Pseudoinverse

Let us find the joint velocities ✓̇ minimizing the kinetic energy 1
2 ✓̇

TM(✓)✓̇

min
1

2
✓̇TM(✓)✓̇ subject to Vd = J ✓̇

H =
1

2
✓̇TM(✓)✓̇ + �T (Vd � J ✓̇)

@H

@✓̇
= M(✓)✓̇ � JT� = 0

Vd = J ✓̇ = JM�1JT�

� = (JM�1JT )�1Vd

✓̇ = M�1JT� = M�1JT (JM�1JT )�1Vd = J+
MVd

where J+
M = M�1JT (JM�1JT )�1
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Weighted Pseudoinverse

Let us find the joint velocities ✓̇ minimizing the kinetic energy plus the rate of change of the potential
energy

1

2
✓̇TM(✓)✓̇ +rh(✓)T ✓̇

where h(✓) could be the gravitational potential energy, or an artificial potential function whose value
increases as the robot approaches an obstacle. The rate of change of h(✓) is

d

dt
h(✓) =

dh(✓)

d✓T
d✓

dt
= rh(✓)T ✓̇

min
1

2
✓̇TM(✓)✓̇ +rh(✓)T ✓̇ subject to Vd = J ✓̇

H =
1

2
✓̇TM(✓)✓̇ +rh(✓)T ✓̇ + �T (Vd � J ✓̇)

@H

@✓̇
= M(✓)✓̇ +rh� JT� = 0

Vd = J ✓̇ = JM�1(JT��rh) = JM�1JT�� JM�1rh

� = (JM�1JT )�1(Vd + JM�1rh)

✓̇ = M�1(JT��rh) = M�1JT (JM�1JT )�1Vd +M�1JT (JM�1JT )�1JM�1rh�M�1rh

= J+
MVd + (I � J+

MJ)M�1(�rh)
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Interpretation of J+
M

With J+
M = M�1JT (JM�1JT )�1, the kinematic resolution of

� = (JM�1JT )�1(Vd + JM�1rh)

✓̇ = J+
MVd + (I � J+

MJ)M�1(�rh)

• The Lagrange multiplier � (see Appendix D) can be interpreted as a wrench in task space, from
⌧ = JTF

• Moreover, in the expression � = (JM�1JT )�1(Vd + JM�1rh),

– the first term, (JM�1JT )�1Vd, can be interpreted as a dynamic force generating the end-
effector velocity Vd

– the second term, (JM�1JT )�1JM�1rh, can be interpreted as the static wrench counteracting
gravity.
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4 Homework : Chapter 6
• Please solve and submit Exercise 6.3, 6.4, 6.5, 6.6, 6.8, 6.10, 6.11, 7.15 , till May 10th (upload it

as a pdf form or email me)
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