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Rigid-Body Motions
• In the previous chapter, we have seen that a minimum of six numbers is needed to specify the

position and orientation of a rigid body in three-dimensional physical space.

• In this chapter, we develop a systematic way to describe a rigid body’s position and orientation
which relies on attaching a reference frame to the body.

• The configuration of this frame w.r.t. a fixed reference frame is represented as a 4× 4 matrix. →
This matrix is an example of an implicit representation of the C-space.

• The actual six-dimensional space of rigid-body configuration is obtained by applying ten constraints
to the 16-dimensional space of 4× 4 real matices.

• For this purpose, this chapter has suggested

– exponential coordinates (six-parameter representation of the configuration)
– free vector (a geometric quantity with a length and a direction, but it is not rooted anywhere)
– coordinate-free (when it does not have any coordinate frame)
– spatial velocity or twist
– spatial force or wrench
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• A coordinate-free point p in physical space can be represented as a vector p ∈ ℜn from the refer-
ence frame.

• A different choice of reference frame and length scale for physical space leads to a different rep-
resentation p ∈ ℜn for the same point p in physical space, for example, pa in {a} reference frame
and pb in {b} frame.

• Space frame, denoted {s}, has been defined as a fixed frame. For example, it might be attached
to a corner of a room.

• Body frame, denoted {b}, is the stationary frame that is coincident with the moving body-attached
frame at any instant. It may be chosen at the mass center of the moving rigid body.

• For simplicity, we will usually refer to a body frame {b} as a frame attached to a moving rigid
body.
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• All reference frames are right-handed.

• If index finger is aligned with x̂-axis and middle finger is aligned with ŷ-axis, then ẑ-axis is de-
fined as thumb direction that the fingers of the right hand curl.
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1 Rigid-Body Motions in the Plane

• Suppose that a length scale and a fixed reference frame {s} have been chosen with unit axes x̂s
and ŷs as unit vectors.

• Similarly, we attach a reference frame with unit axes x̂b and ŷb to the planar body by using the
body frame denoted {b} as a frame attached to a moving body.

• The body-frame origin p can be expressed in terms of the coordinate axes of {s} as

p = pxx̂s + pyŷs
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• The simplest way to describe the orientation of the body frame {b} relative to the fixed frame {s}
is by specifying the angle θ

x̂b = cos θx̂s + sin θx̂y =
1
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ŷb = − sin θx̂s + cos θx̂y = −
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• Assuming we agree to express everything in terms of {s}, the point p can be represented as a
column vector p ∈ ℜ2 of the form:

p =

[
px

py

]

and two vectors x̂b and ŷb can also be written as column vectors and packaged into the following
2× 2 rotation matrix P

P =
[
x̂b ŷb

]
=

[
cos θ − sin θ

sin θ cos θ

]

• Although the rotation matrix P consists of four numbers, they are subject to three constraints
(each column of P must be a unit vector, and the two columns must be orthogonal to each other),
and the one remaining degree of freedom is parametrized by θ.

• The pair (P, p) provides a description of the orientation and position of {b} relative to {s}.
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• Expressing {b} in {s} as the pair (P, p), we have p =

[
px

py

]
=

[
2

2

]
and P =

[
cos θ − sin θ

sin θ cos θ

]
=

[
0 −1
1 0

]

• Expressing {c} in {b} as the pair (Q, q), q =

[
qx

qy

]
=

[
−1
−1

]
and Q =

[
cosψ − sinψ

sinψ cosψ

]
=

[
0 −1
1 0

]
• If we know (Q, q) (the configuration of {c} relative to {b}) and (P, p) (the configuration of {b}

relative to {s}), we can compute the configuration of {c} relative to {s} as follows:

R = PQ =

[
0 −1
1 0

][
0 −1
1 0

]
=

[
−1 0

0 −1

]
convert Q to the {s} frame

r = Pq + p =

[
0 −1
1 0

][
−1
−1

]
+

[
2

2

]
=

[
3

1

]
convert q to the {s} frame and vector-sum with p

• Thus (P, p) not only represents a configuration of {b} in {s}; it can also be used to convert the
representation of a point or frame from {b} coordinates to {s} coordinates.
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• The rigid-body displacement (known as a rigid-body motion) is described by two sequential trans-
formations, (ex) the rotation matrix-vector pair (R, r) of {c} is moved to new frame (R′, r′) of {c’}

1. transformation rotates {c} according to P : (ex) R′ = PR

2. transformation translates it by p in {s} : (ex) r′ = Pr + p

• A rotation matrix-vector pair (P, p) can be used for three purpose:

1. to represent a configuration of a rigid body in {s} (figure 3.3)
2. to change the reference frame in which a vector or frame is represented (figure 3.4)
3. to displace a vector or a frame (figure 3.5(a))
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• Screw motion

– Consider figure. 3.5(b), note that rigid-body motion, expressed as a rotation followed by a
translation, can be obtained by simply rotating the body about a fixed point s by an angle
β.

– This is a planar example of a screw motion.
– Displacement can be parametrized by three screw coordinates (β, sx, sy) in fixed frame {s}.

• Screw axis S

– Rotating about s with a unit angular velocity ω = 1rad/s means that a point at the origin of
{s} frame moves at two units per second initially in the +x̂-direction of the {s} frame, i.e.,
v = (vx, vy) = (2, 0).

– We can package these together in the three-vector S = (ω, vx, vy) = (1, 2, 0), for a representa-
tion of the screw axis.

• Exponential coordinates Sθ

– Following this screw axis for an angle θ = π
2 (β = π

2 in the figure) yields the final displacement.
– Thus we can represent the displacement using the three coordinates Sθ = (π2 , π, 0).
– These are called the exponential coordinates for the planar rigid-body displacement.

• Twist V = S θ̇

– To represent the combination of an angular and a linear velocity, called a twist, we take a
screw axis S = (ω, vx, vy), where ω = 1, and scale it by multiplying by some rotation speed, θ̇

– The twist is V = Sθ̇

– The net displacement obtained by rotating about the screw axis S by an angle θ is equivalent
to the displacement obtained by rotating about S at a speed θ̇ = θ for unit time, so V = S θ̇
can also be considered a set of exponential coordinates.
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Preview of the remainder of this chapter

• Consider a rigid body occupying three-dimensional physical space, as shown in Figure 3.6.

• Assume that both the fixed frame {s} and body frame {b} have been chosen together with a length
scale for physical space.

• All reference frames are right-handed - the unit axes {x̂, ŷ, ẑ} always satisfy x̂× ŷ = ẑ.

• In terms of the fixed-frame coordinates {s}, p can be expressed as

p = p1x̂s + p2ŷs + p3ẑs
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The axes of the body frame {b} can also be expressed as

x̂b = r11x̂s + r21ŷs + r31ẑs

ŷb = r12x̂s + r22ŷs + r32ẑs

ẑb = r13x̂s + r23ŷs + r33ẑs

• Defining p ∈ ℜ3 and R ∈ ℜ3×3 as

p =


p1

p2

p3

 R =
[
x̂b ŷb ẑb

]
=


r11 r12 r13

r21 r22 r23

r31 r32 r33


• The 12 parameters given by (R, p) then provide a description of the position and orientation of

the rigid body relative to the fixed frame.

• Since the orientation of a rigid body has three degrees of freedom, only three of the nine entries
in R can be chosen independently.

• Every rigid-body displacement can be obtained by a finite rotation and translation about a fixed
screw axis.
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