3 Newton-Euler Inverse Dynamics

e Consider the inverse dynamics (ID) problem for an n-link open chain connected by one-dof joints.

e Given the joint positions 6 € R", velocities § € R, and accelerations 6§ € R", the objective is to
calculate the right-hand side of the dynamics equation, ultimately to obtain 7

T = M(0)0 + h(6,0)

e Main result is a recursive ID algorithm consisting of a forward and a backward iteration stage.

— In the forward iteration, the positions, velocities, and accelerations of each link are propa-
gated from the base to the tip

— In the backward iteration, the forces and moments experienced by each link are propagated
from the tip to the base.
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3.1

Derivation

A body-fixed reference frame {i} is attached to the center of mass (CoM) of each link i, i =1,---  n.

The base frame is denoted {0}, and a frame at the end-effector is denoted {n + 1}, which is fixed

in {n}.

When the manipulator is at the home position, with all joint variables zero,

M; ;j € SE(3) : configuration of frame {j} in the frame {i}
M; = M, : configuration of {i} in the base frame {0}

With these definitions, M;_;; and M;;_; can be calculated as
M; 1, =M M; and M;; ;=M "M,

The screw axis for joint i, expressed in the link frame {i}, is .A;. This same screw axis is expressed
in the space (or base) frame {0} as S;, where the two are related by

A; = Ady+(S)

Defining 7;; € SE(3) to be the configuration of frame {j} in {i} for arbitrary joint variables 6
then T;_, ;(0;), the configuration of {i} relative to {i —1} given the joint variable 6;, and 7}, ,(6;) =
T~} .(0;) are calculated as

Ti-1(0;) = Mi—l,ie[Ai]ei and Tii-1(0;) = e~ 1Ailb: i1
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e We further adopt the following notation:

1. The twist of link frame {i}, expressed in frame-{i} coordinates, is denoted V; = (w;, v;)

2. The wrench transmitted through joint i to link frame {i}, expressed in frame-{i} coordinates,
is denoted F; = (m;, f;).

3. Let G; € R9*® denote the spatial inertia matrix of link i, expressed relative to link frame {i}.

Since we are assuming that all link frames are situated at the link CoM, G; has the block-
diagonal form

G; =

Z;  0O3x3
O3x3 m;l
where 7; denotes the 3 x 3 rotational inertia matrix of link / and m; is the link mass.

e With these definitions, we can recursively calculate the twist and acceleration of each link, mov-
ing from the base to the tip.

e The twist V; of link i is the sum of the twist of link i — 1, but expressed in {i}, and the added
twist due to the joint rate 0, :

V, = .AZ@Z + [AdT,;J_l]Vifl

e The accelerations V; can also be found recursively. Taking the time derivative, we get

) . d
V, = ./4292 + [AdTi7i,1]Vi—1 + %([Adnzfl])vl_l
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e To calculate the final term in this equation, we express 7;,_; and 4; as

-1 P and A = “
O3x1 1 v
Rii-1 0O3x3

) Vi1
[p|Rii—1 Rii

—[whi| Rii 1 O3x3
_—[véi]Rm_l — [we7] [p|Ri i1 —[Wéz‘]Rm—l
Rii 1 O3xs
p|Rii—1 Rii

Tiio1 =

Then

d d
E([AdTm—l])Vlfl — E (

1—1

-_[Wéi] O3x3

] ' Vici = —lad 4 4 |Vi = adZAZQZ
| —[v0] —[wb] 1 [ Alel] lady,]

e Substituting this result into acceleration, we get

Vi = Aib; + [Adr,, Vi1 + [ady,) Aib;

ii—1

i.e., the acceleration of link 7 is the sum of three components: a component due to the joint ac-
celeration 6¢;, a component due to the acceleration of link i — 1 expressed in {i}, and a velocity-
product component.

[ 142



joint
axis ¢ y
Vi

Figure 8.6: Free-body diagram illustrating the moments and forces exerted on link
7.

e Once we have determined all the link twists and accelerations moving outward from the base,
we can calculate the joint torques or forces by moving inward from the tip.

e The total wrench acting on link ¢ is the sum of the wrench F; transmitted through joint i and
the wrench applied to the link through joint ¢ + 1 (or, for link n, the wrench applied to the link
by the environment at the end-effector frame {n + 1}), expressed in the frame i.

Fo=GVy— lady "GV = GV —ady, (GV,) = Fi — Adp,,| (Fisa)

e Solving from the tip toward the base, at each link i we solve for the only unknown F;.

e Since joint / has only one-dof, five dimensions of the six-vector F; are provided by the structure
of the joint, and the actuator only has to provide the scalar force or torque in the direction of the
joint’s screw axis:

Ti = ]:Z-T-Az‘

where it provides the torques required at each joint, solving the ID problem.
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3.2 Newton-Euler Inverse Dynamics (ID) Algorithm

e Initialization

1. Attach a frame {0} to the base, frames {1} to {n} to the CoM of links {1} to {n}, and a
frame {n + 1} at the end-effector, fixed in the frame {n}.
2. Define M;; 1 to be the configuration of {i — 1} in {i} when 6, = 0.

3. Let A; be the screw axis of joint i expressed in {i}, and G; be the 6 x 6 spatial inertia matrix
of link .

4. Define V, to be the twist of the base frame {0} expressed in {0} coordinates. (It is typically
Zero.)

5. Let g € R be the gravity vector expressed in base-frame coordinates, and define V, = (W, 0y) =
(0, —g). (Gravity is treated as an acceleration of the base in the opposite direction.)

6. Define 7,1 = Fiuip = (Mup, frip) to be the wrench applied to the environment by the end-
effector, expressed in the end-effector frame {n + 1}.

e Forward iterations : Given 6;,6;.6;, for i =1 to n do

Tii1(60;) = e~ IAilf: i1
V, = Adp,  (Vii1) + Aib;

Vi = Adr (Vifl) + adyL(AZ)HZ + .AZQZ

e Backward iterations : Given F,,q, for i =n to 1 do

F; = Ad%i+1’i(}‘i+1) + GV, — adﬂ(gz%)
7 =Fl A
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4 Dynamic Equations in Closed Form

The recursive ID algorithm is organized into a closed-form set of dynamics equations

7= M(0)0+ ¢(,0) + g(6)
The sum of the kinetic energies of each link should be equal to %QTM (6)0
K= lzn: vIg.y,
9 . 3 Ji Ve

where V; is the twist of link frame {i} and §; is the spatial inertia matrix of link i (both are
expressed in link-frame-{i} coordinates).

Let Tp;(01,--- ,0;) denote the forward kinematics from the base frame {0} to link frame {i}, and
let J;;,(0) denote the body Jacobian obtained from ToleOi.

Note that J; as defined is a 6 x 7« matrix; we turn it into a 6 x n matrix by filling in all entries
of the last n — 7 columns with zeros.

Vi = Ji(60)0

The kinetic energy can then be written

n

K= %éT (Z; J;g(e)gijib(e)> 0 = MO)=) _ Jp(0)G ()

i=1
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e Let us derive a closed-form set of dynamic equations by defining the following stacked vectors:

Vi Fi
V=|:|er™ F=|:]enr™
Vn Fn

e Further, define the following matrices:

-Al O6><1 U O6><1 gl O6><6 T O6><6
A Opx1 A2 -+ Ogx16 e G Osx6 G2 -+ Opxe c Bnx6n
Og1 -ov o Ay | O =+ - G |
lady,]  Opx6 ~ Opxo lad 4 4]  Osxe -+ Opxo
[CLdv] _ 06><6 [adVQ] e 06><6 e §R6n><6n [adAg] _ 06><6 [adA2é2] T O6><6 c §R6n><6n
O - oo fady)) | O e fady )
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e We write W(0) to emphasize the dependence of WV on 6.

O6x6 O6x6

[Adz,,]  Opxe
06X6 L4dT@]

| Osx6 Ogxo

e Finally, define the following stacked vectors:

l%aﬂz::

‘4dTh(Lb)

06x1

O6><1

c g%Gn

l%a&z::

06x1

O6><1

[

O6x6
O6x6

Osx6

O6x6
O6x6

O6x6

Adr, ] Osxe,

fdaw(ib)

c g%6n

c S%GnXGn
O6x1
Fiip =
g O6><1
_Ad%n-i-l,n (Fn+1)

Note that A € R and G € R"*6" are constant block-diagonal matrices.
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e With the above definitions, our earlier recursive inverse dynamics algorithm can be assembled

into the following set of matrix equations:

V=WV + A0 + Visse

V =W(O)V + A0 — [ad 1) W(O)V + Vise) + Viase
F=WO)'F+GV — [ady]"GV + Fup

T=A"F

e The matrix W(0) has the property that W"(6) = 0Og,x6, (Such a matrix is said to be nilpotent of
order n), and one consequence verifiable through direct calculation is that

(Tonxon — W) ™" = Ignxon + W+ W? + - + W' = £(6)

Isx6 O6x6 Osx6

[AdTm] ]6><6 O6x6
- [AdT31] [AdTBQ] ]6><6

| [Adr,,] [Adr,] [Adg,,]
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- Ogx6

- Tgxe
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e The earlier matrix equations can now be reorganized as follows:

V = L(0)(Ab + Vyuse)
V = L(0)(AG — [ad 5] (W(O)V + Viuse) + Viase)
F=LO)T(GY — [ady]"GV + Fup)

e If the robot applies an external wrench F;, at the end-effector, this can be included into the dy-
namics equation

7= M(0)0+ c(8,0) + g(0) + JT(0) Fup
where J(0) denotes the Jacobian of the FK expressed in the same reference frame as 7;;,, and

M(0) = ATLT(0)GL(9)A
c(0,0) = —ATLY(GL(O)[ad )WV (0) + [ady]T G)L(0).A0
9(0) - ATﬁT(e)gﬁ(e)vbase
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5 Forward Dynamics of Open Chain

e The forward dynamics (FD) problem involves solving
M(0) = 7(t) — h(8,0) — JT(0) Fy,

for 6, given 6,6, and the wrench Fip applied by the end-effector (if applicable).
e Term h(f,6) can be computed by calling the ID algorithm with § = 0 and Fiip = 0.

e The inertia matrix M (6) can be computed by n calling of the inverse dynamics algorithm to build
M(6) column by column.

In each of the n calls, set ¢ =0, 0 =0, and Fiip = 0.
In the first call, the column vector 6 is all zeros except for a 1 in the first row.

In the second call, § is all zeros except for a 1 in the second row, and so on.

- Wb =

The 7 vector returned by the ith call is the ith column of M (#), and after n calls the n x n
matrix M (0) is constructed.

e With M (0), h(@,”é), and F;;,, we can use any efficient algorithm for solving the equation of the form
M(6)0 = b, for 6.
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The FD can be used to simulate the motion of the robot given its initial state, the joint forces-
torques 7(¢), and an optional external wrench F;;,(t), for ¢ € [0,%/].

First define the function ForwardDynamics returning the solution:

0 =FD(,6,, Fip)

Defining the variables ¢; = 0, ¢ = 6, the second-order dynamics can be converted to two first-order
differential equations,

(11 = {2
i = FD(0,0,7, Fiip)

The Euler integration of the robot dynamics is used

q2 (t + 5t)

q1(t) + q2(t)ot
Q2(t) + FD(Q, 97 T, Ezp)at

Given a set of initial values for ¢;(0) = #(0) and ¢ (0) = 6(0), the above equations can be iterated
forward in time to obtain the motion 6(¢) = ¢;(¢) numerically.
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e Euler Integration Algorithm for FD

1. Inputs: The initial conditions 6(0) and 6(0), the input torques 7(¢) and wrenches at the end-
effector F;,(t) for ¢t € [0,¢/], and the number of integration steps .

2. Initialization: Set the timestep 0t = th , and set 0[0] = 0(0),0[0] = 0(0)
3. Iteration: For k=0 to N —1 do

O[k] = FD(0[K], 0[k], T(kdt), Frip(K6))
Ok + 1] = 0[k] + 0[k]ot

0
[k + 1] = O[k] + 6[k]ot

4. Output: The joint trajectory 6(kd) = 0[k], 8(kot) = 6[k], for k=0,--- , N.

e The result of the numerical integration converges to the theoretical result as the number of in-
tegration steps IV goes to infinity.

e Higher-order numerical integration schemes, such as fourth-order Runge-Kutta, can yield a closer
approximation with fewer computations than the simple first-order Euler method.
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6 Dynamics in the Task Space

e The dynamic equations change under a transformation to coordinates of the end-effector frame
(task-space coordinates).

Consider a six-dof open chain with joint space dynamics

= M(0)6+ h(6,0) heRS 1eRS

The twist V = (w,v) of the end-effector is related to the joint velocity 6 by

Y =J(6)f

where V and J(0) are always expressed in terms of the same reference frame.

The time derivative V is then

V= J(60)0+ J(6)0

At configurations 6§ where J(0) is invertible, we have
0=J"1ty 0=J1y—JJ Y

Substituting for 6 and 6 leads to

=M@ [J V- J T W] + K, TY)
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e Pre-multiply both sides by J~7 to get
JTr=JTMI W —J M I W+ T Thh, TV)
e Expressing J 77 as the wrench F, the above can be written
F=AO)YV+n0,V)
where
AB) =T TMmJ™! n(0,V) = J Thd, J V) — AO)JT TV

These are the dynamic equations expressed in end-effector frame coordinates.

e If an external wrench F is applied to the end-effector frame then, assuming the actuators provide
zero forces and torques, the motion of the end-effector frame is governed by these equations.

e Note that J(f) must be invertible (i.e., there must be a one-to-one mapping between joint veloci-
ties and end-effector twists) in order to derive the task space dynamics above.
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7 Homework : Chapter 8

e Please solve and submit Exercise 8.1, 8.2, 8.4, 8.6, 8.7 (upload it as a pdf form or email me)
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