
(NC) 3 Stability of Equilibrium Points / 3.1 Basic Concepts

1. (Stability) is defined at the specific points, not for the system itself.
cf) the system is stable (X) ) the system has any stable equilibrium points (O)

• An equilibrium point is stable if all solutions starting at nearby points stay nearby; oth-
erwise it is unstable

• It is asymptotically stable if all solutions starting at nearby points not only stay nearby,
but also tend to the equilibrium point as time approaches infinity
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2. (Equilibrium Point) Let us denote an equilibrium point of ẋ = f(x) as x̄ 2 D; namely f(x̄) = 0.

• The equilibrium point can be always shifted to the origin via a change of variables. For
example, when x̄ 6= 0, if the change of variables y = x� x̄ is utilized, since the derivative
of y is given by

ẏ = ẋ = f(x) = f(y + x̄) , g(y) where g(0) = 0,

then the system has an equilibrium point at the origin in the new variable y.

• Without loss of generality, we assume that f(x) satisfies f(0) = 0 and thus we can check
the stability of the origin x = 0.
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3. (Definition 3.1) (✏ � � Requirement for Stability) Let f be a locally Lipschitz function defined
over a domain D 2 <

n, which contains the origin, and f(0) = 0. The equilibrium point x = 0 of
ẋ = f(x) is

• stable, for each ✏ > 0, if 9 � > 0 (dependent on ✏) 3

kx(0)k < �(✏) ! kx(t)k < ✏, 8 t � 0

• unstable if it is not stable.

• asymptotically stable if it is stable and � can be chosen 3

kx(0)k < � ! lim
t!1

x(t) = 0

a) For any ✏, we must produce � (dependent on ✏) such that a trajectory starting in a �

neighborhood of the origin will never leave the ✏ neighborhood.

b) Trying to apply ✏ � � theory becomes actually finding all solutions of the state equation,
but it may be difficult or even impossible.

c) As an alternative, Lyapunov’s method provides us with a tool to investigate stability of
equilibrium points w/o solving the state equation.
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4. (Scalar System) For given one-dimensional system
• the ✏ � � requirement for stability is

violated if xf(x) > 0. (see Figure 3.1)

• a necessary condition for the origin to
be stable is to have xf(x)  0 in some
neighborhood of the origin. (see Fig-
ure 3.2/3.3)

• the origin will be asymptotically sta-
ble if and only if xf(x) < 0 in some
neighborhood of the origin. (see Fig-
ure 3.3)

• Let us guess any criterion about the
stability using ẋ = f(x)

xf(x) = xẋ , V̇ (x)

+

V (x) =
1

2
x2

– if V̇ > 0, unstable
– if V̇  0, stable
– if V̇ < 0, asymptotically stable

5. (Region of Attraction) In Figure 3.3(a), if x0 = x(0) exists in the set {�a < x < b}, then x(t) ! 0

as t ! 1, otherwise it is unstable.
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6. (Definition 3.2) (Region of Attraction) Let the origin be an asymptotically stable equilibrium
point of the system ẋ = f(x), where f is locally Lipschitz function defined over a domain
D 2 <

n that contains the origin. Then

• the region of attraction of the origin is the set of all points x0 in D such that the solution
of ẋ = f(x) starting at x(0) = x0 converges to the origin as t tends to infinity.

• the origin is globally asymptotically stable if its region of attraction is the whole space <
n

7. To begin with, let us deal with how to obtain the solution of linear system.

8. (Linear Systems) For the diagonlization, let us obtain the eigenvalue decomposition of A in
either real or complex number domain

A = M�1⇤M $ ⇤ = MAM�1 =


�1 0
0 �2

�

where �1,�2 2 < or �1,2 = ↵± j� 2 C. For linear time-invariant system, the solution is given

ẋ = Ax ! x(t) = eAtx(0) = M�1e⇤tMx(0) (24)

9. (Theorem 3.1) The equilibrium point x = 0 of ẋ = Ax is stable if and only if

• all eigenvalues of A 2 <
n⇥n satisfy Re[�i]  0 and

• for every eigenvalue with Re[�i] = 0 and algebraic multiplicity qi � 2, rank(A��iI) = n�qi

The equilibrium point x = 0 is globally asymptotically stable if and only if all eigenvalues of
A satisfy Re[�i] < 0.
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10. (Example 3.1) Assume two same systems having following form are connected by series or by
parallel. Check the stability of series- or parallel-connected system?

ẋ1 = Ax1 +Bu1 ẋ2 = Ax2 +Bu2

y1 = Cx1 y2 = Cx2

where
A =


0 1
�1 0

�
B =


0
1

�
C =

⇥
1 0

⇤

• Since the series-connected (u2 = y1) or parallel-connected (u2 = u1) system has

ẋ1 = Ax1 +Bu1 ẋ1 = Ax1 +Bu1

ẋ2 = Ax2 +Bu2 = Ax2 +B(Cx1) = BCx1 + Ax2 ẋ2 = Ax2 +Bu2

the system matrix will be either

As =


A 0
BC A

�
=

2

664

0 1 0 0
�1 0 0 0
0 0 0 1
1 0 �1 0

3

775 Ap =


A 0
0 A

�
=

2

664

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

3

775

• The matrices Ap and As have the same eigenvalues on ±j with multiplicity qi = 2, for
i = 1, 2. For �1 = j,

rank(As � jI) = 3 6= 2 = n� q1 rank(Ap � jI) = 2 = 2 = n� q1

• By Theorem 3.1, the origin of series-connected system is unstable, but the origin of
parallel-connected system is stable
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11. (Hurwitz) When Re[�i] < 0 for i = 1, · · · , n, A is called a Hurwitz matrix. The origin of ẋ = Ax

is asymptotically stable if and only if A is Hurwitz. In this case, its solution satisfies the
inequality

kx(t)k  kkx(0)ke�t, 8 t � 0 with k > 0 and � < 0 (25)

12. (Definition 3.3) (Exponential Stability) Let f(x) be a locally Lipschitz function defined over
a domain D ⇢ <

n, which contains the origin, and f(0) = 0. The equilibrium point x = 0 of
ẋ = f(x) is

• exponentially stable if 9 positive c, k and � 3 inequality Eq. (25) is satisfied 8 kx(0)k < c.

• globally exponentially stable if the inequality is satisfied for every initial state x(0).

13. (Example 3.2) Show that the origin of ẋ = �x3 is asymptotically stable, but not exponentially
stable ?

(1) f(x) = �x3 is locally Lipschitz b/c f 0(x) = �3x2 is continuous and locally bounded for all x
in a domain D ⇢ <.

(2) Since xf(x) < 0, the origin is asymptotically stable. For given initial condition x(0) = a,
the solution cannot leave the compact set {|x|  |a|}. Thus we conclude by Lemma 1.3
that it has a unique solution for all t � 0

dx

dt
= �x3 ! �

dx

x3
= dt ! �

Z
x(t)

x(0)
x�3dx =

Z
t

0
dt !

1

2x2

����
x(t)

x(0)

= t ! x(t) =
x(0)p

1 + 2tx2(0)

(3) Since the solution does not satisfy inequality of the form (25), we know that it is asymp-
totically stable, not exponentially stable.
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(NC) 3.2 Linearization
1. Stability can be easily checked by seeing the local behavior (convergence or divergence) near

the specific point.

2. (Theorem 3.2) (Lyapunov’s Indirect Theorem) Let x = 0 be an equilibrium point for the non-
linear system ẋ = f(x), where f is continuously differentiable in a neighborhood of the origin.

A =
@f

@x
(x)

����
x=0

• the origin is exponentially stable if and only if Re[�i] < 0 for all eigenvalues of A

• the origin is unstable if Re[�i] > 0 for one or more of the eigenvalues.

• but, theorem does not say anything about the case when Re[�i]  0 for all i. In this case,
linearization fails to determine the stability.

3. (Example 3.4) The pendulum system has two equilibrium points at (0, 0) and (⇡, 0), with b > 0.

ẋ1 = x2 ẋ2 = � sin x1 � bx2

• Jacobian matrix is A = @f

@x
=


0 1

� cos x1 �b

�

• At (0, 0), A =


0 1
�1 �b

�
and �1,2 = �0.5b±0.5

p
b2 � 4. Since all eigenvalues with Re[�i] < 0,

the origin is exponentially stable.

• At (⇡, 0), A =


0 1
1 �b

�
and �1,2 = �0.5b± 0.5

p
b2 + 4. Since one eigenvalue with Re[�i] > 0,

the (⇡, 0) is unstable.
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(NC) 3.3 Lyapunov’s Method
1. Reconsider the pendulum equation

ẋ1 = x2 ẋ2 = � sin x1 � bx2

we have argued that the origin is stable when b = 0 and asymptotically stable when b > 0

• by drawing phase portraits (Example 2.3)

• by linearization (Example 3.4).

• As an another approach, the energy concept can be used to determine the stability.

2. (Energy Function) Consider the kinetic energy plus potential energy

E(x) =
1

2
x22 + (1� cos x1) (

1

2
m(l✓̇)2 +mg(l � l cos ✓)

By examining the derivative of E along the trajectories of the system, it is possible to deter-
mine the stability of the equilibrium point.

• When b = 0, the origin x = 0 is a stable equilibrium point b/c

dE

dt
= x2ẋ2 + sin x1ẋ1 = �x2 sin x1 + sin x1x2 = 0

• When b > 0, it is a stable equilibrium point b/c

dE

dt
= x2ẋ2 + sin x1ẋ1 = �x2 sin x1 � bx22 + sin x1x2 = �bx22  0

actually, when b > 0, the origin is asymptotically stable, although we cannot show it by
using energy function. (LaSalle’s Theorem)
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3. In 1892, Lyapunov showed that certain other functions could be used instead of energy to
determine stability of an equilibrium point.

4. (Theorem 3.3) (Lyapunov’s Theorem) Let f be a locally Lipschitz function defined over a do-
main D ⇢ <

n, which contains the origin, and f(0) = 0.
Let V (x) be a continuously differentiable function defined over D 3

V (0) = 0 and V (x) > 0 8x 2 D with x 6= 0 (26)
V̇ (x)  0 8x 2 D (27)

Then the origin is a stable equilibrium point of ẋ = f(x).
Moreover, if Eq. (26) holds and

V̇ (x) < 0 8x 2 D with x 6= 0 (28)

then the origin is asymptotically stable
Furthermore, if D = <

n, Eqs. (26) and (28) hold 8x 6= 0, and

kxk ! 1 ) V (x) ! 1 (29)

then the origin is globally asymptotically stable

• V (0) = 0 and V (x) > 0 (V (x) < 0) for x 6= 0 : is said to be positive (negative) definite

• V (0) = 0 and V (x) � 0 (V (x)  0) for x 6= 0 : is said to be positive (negative) semidefinite

• If V (x) does not have a definite sign, it is said to be indefinite

• V (x) ! 1 as kxk ! 1 : is said to be radially unbounded.
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5. (Rephrasing Lyapunov’s Theorem)

• The origin is stable if 9 a continuously differentiable V (x) > 0 with V (0) = 0 3 V̇  0.

• It is asymptotically stable if 9 continuously differentiable V (x) > 0 with V (0) = 0 3 V̇ < 0.

• It is globally asymptotically stable if the conditions for asymptotic stability hold globally
and V (x) is radially unbounded

6. (How to Check Positive Definiteness) For the quadratic form

V (x) = xTPx

where P is a real symmetric matrix, V (x) > 0 if and only if all the eigenvalues of P are positive,
which is also true if and only if all the leading principal minors of P are positive.

7. (Example 3.5) Find the conditions for V (x) > 0 and V (x) < 0, respectively?

V (x) =
⇥
x1 x2 x3

⇤
2

4
a 0 1
0 a 2
1 2 a

3

5

2

4
x1
x2
x3

3

5

The leading principal minors of P are a > 0, a2 > 0, and a(a2 � 5) > 0

The leading principal minors of �P are �a > 0, a2 > 0, and �a(a2 � 5) > 0

• a >
p
5, for V (x) > 0

• a < �
p
5, for V (x) < 0
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8. (Advantage and Disadvantage of Lyapunov Theorem) Lyapunov’s Theorem can be applied
w/o solving the differential equation ẋ = f(x), but there is no systematic method for finding
Lyapunov functions

9. (Example 3.6) Find the Lyapunov function of pendulum system (b > 0):

ẋ1 = x2 ẋ2 = � sin x1 � bx2

• Starting from the energy E(x) = 1
2x

2
2+ (1� cos x1), let us replace the term 1

2x
2
2 by the more

general quadratic form 1
2x

TPx for some 2⇥ 2 positive definite matrix P :

V (x) =
1

2

⇥
x1 x2

⇤ p11 p12
p12 p22

� 
x1
x2

�
+ (1� cos x1)

• For the positive definiteness of V (x) : p11 > 0 and p11p22 � p212 > 0

• For the negative definiteness of V̇ (x)

V̇ (x) = (p11x1 + p12x2)ẋ1 + (p12x1 + p22x2)ẋ2 + sin x1ẋ1

= [(1� p22)x2 � p12x1] sin x1 + (p11 � bp12)x1x2 + (p12 � bp22)x
2
2

• Let us take p22 = 1, p11 =
1
2b

2, p12 =
1
2b, then we have

V̇ = �
1

2
bx1 sin x1 �

1

2
bx22 < 0, since x1 sin x1 > 0 8 |x1| < ⇡

• Taking D = {|x1| < ⇡}, by Theorem 3.3, the origin is asymptotically stable
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10. One systematic way to find Lyapunov function is a Variable Gradient Method, although it
brings very complex and tedious calculations.

11. (Variable Gradient Method) It is useful in searching for a Lypaunov function. Let V (x) be a
scalar function of x and g(x)T , @V

@x
. Notice that @V

@x
is defined as a row vector. The derivative

of V (x) is given by

V̇ (x) =
@V

@x

@x

@t
=
@V

@x
ẋ =

@V

@x
f(x) = g(x)Tf(x)

• It is not difficult to verify that g(x) is the gradient of a scalar function if and only if the
Jacobian matrix is symmetric; that is

@gi
@xj

=
@gj
@xi

, 8i, j = 1, · · · , n (30)

• We start by choosing g(x) 3 V̇ (x) = g(x)Tf(x) < 0.

• Usually, the function V (x) is chosen as follow

V (x) =

Z
x1

0
g1(y1, 0, · · · , 0)dy1 +

Z
x2

0
g2(x1, y2, · · · , 0)dy2 + · · ·+

Z
xn

0
gn(x1, x2, · · · , xn�1, yn)dyn

(31)

• By leaving some parameters of g(x) undetermined, one would try to choose them to en-
dure that V (x) > 0.
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12. (Example 3.7) Show that the origin is asymptotically stable using the gradient variable method?

ẋ1 = x2 ẋ2 = �h(x1)� ax2

where a > 0, h(·) is locally Lipschitz, h(0) = 0, and yh(y) > 0 8y 6= 0, y 2 (�b, c).

• To apply the variable gradient method, let us try: g(x) = @V

@x
=


�1(x1) +  1(x2)
�2(x1) +  2(x2)

�

• From the symmetric condition we have

@g1
@x2

=
@g2
@x1

, !
@ 1(x2)

@x2
=
@�2(x1)

@x1
, �, !  1(x2) , �x2, and �2(x1) , �x1

• By choosing g(x) 3 V̇ (x) = g(x)Tf(x) < 0, we have

V̇ = [�1(x1) +  1(x2)]ẋ1 + [�2(x1) +  2(x2)]ẋ2 = [�1(x1) + �x2]x2 � [�x1 +  2(x2)]h(x1)� [�x1 +  2(x2)]ax2

= �x22 � �x1h(x1)� a�x1x2 + �1(x1)x2 � [h(x1) + ax2] 2(x2) !  2(x2) , �x2, and �1(x1) , a�x1 + �h(x1)

= ��x1h(x1)� (a� � �)x22 and g(x) ,

a�x1 + �h(x1) + �x2

�x1 + �x2

�

• By integrating, we have

V (x) =

Z
x1

0
g1(y1, 0)dy1 +

Z
x2

0
g2(x1, y2)dy2 =

Z
x1

0
[a�y1 + �h(y1)]dy1 +

Z
x2

0
[�x1 + �y2]dy2

=
a�

2
x21 + �

Z
x1

0
h(y1)dy1 + �x1x2 +

�

2
x22 =

1

2
xT


a� �
� �

�
x+

Z
x1

0
h(y)dy

• By choosing � > 0 and 0 < � < a�, V (x) > 0 and V̇ (x) < 0 are ensured over the domain
D = {�b < x1 < c}. Thus the origin is asymptotically stable.
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(NC) 3.4 The Invariance Principle

1. (Revisited Example 3.6)

ẋ1 = x2 ẋ2 = � sin x1 � bx2

• The energy Lyapunov function proves just that it is not asymptotically stable but stable

E(x) =
1

2
x22 + (1� cos x1) !

dE

dt
= �bx22  0

• When Ė = 0, it means x2 = 0. From the dynamics, we have

x2 = 0 ) ẋ2 = 0 ) sin x1 = 0 over D = {|x1| < ⇡}

• The system can maintain the V̇ (x) = 0 condition only at the origin x = 0.

2. (LaSalle’s Invariance Principle) If we can find V (x) > 0 3 V̇ (x)  0 and if we can establish
that no trajectory can stay identically at points where V̇ (x) = 0 except x = 0, then the origin
is asymptotically stable.

3. (Positively Invariant Set) Equilibrium points and limit cycles are invariant sets, since any
solution starting in the set remains in it for all t 2 <. The set ⌦c = {V (x)  c} satisfying
V̇ (x)  0 is positively invariant set since a solution starting in ⌦c remains in ⌦c 8t � 0.
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4. (LaSalle’s Invariance Theorem) Let f(x) be a locally Lipschitz function defined over a domain
D ⇢ <

n, which contains the origin, and f(0) = 0. Let V (x) be a continuously differentiable
positive definite function over D 3 V̇ (x)  0 in D. Let S = {x 2 D|V̇ = 0} and suppose that no
solution can staty identically in S, other than the trivial solution x(t) = 0. Then the origin is
an asymptotically stable equilibrium point.
Finally, if D = <

n and V (x) is radially unbounded, then the origin is globally asymptotically
stable.

5. (Example 3.8)

ẋ1 = x2 ẋ2 = �h1(x1)� h2(x2)

where h1 and h2 are locally Lipschitz and satisfies hi(0) = 0, yhi(y) > 0, for 0 < |y| < a.

• Energy Lyapunov function can be taken : V (x) = 1
2x

2
2 +

R
x1

0 h1(y)dy > 0

• Let D = {|x1| < a, |x2| < a}; V (x) > 0 and

V̇ (x) = x2ẋ2 + h1(x1)ẋ1 = �x2h2(x2)  0

note that V̇ = 0 means x2 = 0 since h2(x2) 6= 0 except x2 = 0

• Hence S = {x 2 D|x2 = 0}. Let x(t) be a solution that belongs identically to S

x2 = 0 ) ẋ2 = 0 ) h1(x1) = 0 ) x1 = 0

• Only solution that can stay identically in S is x(t) = 0, and thus the origin is asymptoti-
cally stable.
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(NC) 3.5 Exponential Stability

1. We have seen in (Theorem 3.2) that the origin of ẋ = f(x) is exponentially stable if and only if
the Jacobain is Hurwitz. This result, however, is local.

2. (Theorem 3.6) Let f(x) be a locally Lipschitz function defined over a domain D 2 <
n, which

contains the origin, and f(0) = 0. Let V (x) be a continuously differentiable function defined
over D 3

k1kxk
a
 V (x)  k2kxk

a (32)
V̇ (x)  �k3kxk

a
8x 2 D (33)

where k1, k2, k3 and a are positive constants. Then the origin is an exponentially stable equi-
librium of ẋ = f(x).
If the assumptions hold globally, the origin will be globally exponentially stable.
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3. (Example 3.10)

ẋ1 = x2 ẋ2 = �h(x1)� x2

where h is locally Lipschitz, h(0) = 0 and c1y2  yh(y)  c2y2 with positive constants c1 and c2
for all y

• Take the Lyapunov function as following form

V (x) = xTPx+ 2

Z
x1

0
h(y)dy where P =

1

2


1 1
1 2

�

whose derivative satisfies

V̇ (x) = (x1 + x2)ẋ1 + (x1 + 2x2)ẋ2 + 2h(x1)ẋ1 = �x1h(x1)� x22

• Then we know

xTPx  V (x)  xTPx+ c2x
2
1

V̇ (x)  �c1x
2
1 � x22

• Using the fact that �min(P )kxk2  xTPx  �max(P )kxk2 , we can rewrite above inequalities
as follows:

�min(P )kxk2  V (x)  (�max(P ) + c2)kxk
2

V̇ (x)  �c1x
2
1 � x22

• Hence, by Theorem 3.6, the origin is globally exponentially stable.
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4. (For Linear Systems) By applying Theorem 3.6 with V (x) = xTPx, where P = P T > 0, the
derivative of V along ẋ = Ax is given by

V̇ (x) = ẋTPx+ xTPẋ = xT (ATP + PA)x , �xTQx

where Q = QT > 0 defined by

ATP + PA = �Q (34)

If 9 Q = QT > 0, we can say by Theorem 3.3 or 3.6 that the origin is globally exponentially
stable; that is, A is Hurwitz. Equation (34) is called the Lyapunov equation.

5. (Theorem 3.7) A matrix A is Hurwitz if and only if, for every Q = QT > 0, 9 P = P T > 0 that
satisfies ATP + PA+Q = 0. Moreover, if A is Hurwitz, then P is unique.

6. If the linearization is applied to the nonlinear system ẋ = f(x) and f(0) = 0, we have

ẋ = f(x) = [A+G(x)]x where A =
@f

@x

����
x=0

and G(x) ! 0 as x ! 0

• When A is Hurwitz, we can solve Lyapunov equation ATP + PA + Q = 0 for Q > 0, and
use V (x) = xTPx as a Lyapunov function candidate for the nonlinear system. Then

V̇ (x) = ẋTPx+ xTPẋ = xT [A+G]TPx+ xTP [A+G]x = �xTQx+ 2xTPGx

• Since G(x) ! 0 as x ! 0, for given any 0 < k < 1, we can find r > 0 3 2kPGk < k�min(Q) in
domain D = {kxk < r}. The origin is exponentially stable in D (region of attraction) b/c

V̇ (x)  �(1� k)�min(Q)kxk2

51



(NC) 3.6 Region of Attraction

1. (Example 3.11) Draw the region of attraction of the following system

ẋ1 = �x2 ẋ2 = x1 + (x21 � 1)x2 (35)

• Van der Pol oscillator in reverse time.

v = @(t,x) [-x(2); x(1) + (x(1)ˆ2-1)*x(2) ];
for x10 = [-3 -2.5 -2 -1.5 1.5 2 2.5 3]

[ts,ys] = ode45(v,[0,20],[x10;0]);
axis([-4 4 -4 4])
plot(ys(:,1),ys(:,2))
hold on
plot(ys(1,1),ys(1,2),’bo’) % starting
hold on
plot(ys(end,1),ys(end,2),’ks’) % ending

end

• The origin is stable focus surrounded by an unstable limit cycle.

• The region of attraction is all trajectories in the interior of the limit cycle spiral towards
the origin.
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2. Lyapunov’s method can be used to estimate the region of attraction.

• The simplest estimate is the set ⌦c = {V (x) < c} satisfying V̇ (x)  0 with ⌦c ⇢ D.

• For a quadratic Lyapunov function V (x) = xTPx and D = {kxk < r} satisfying V̇ (x)  0,
we can ensure that ⌦c ⇢ D by choosing

c < min
kxk=r

xTPx = �min(P )r2 (36)

where ⌦c = {V (x) < c} satisfying V̇ (x)  0 is the positively invariant set in D

• For D = {|bTx| < r}, where b 2 <
n, since

min
|bTx|=r

xTPx =
r2

bTP�1b
(37)

⌦c will be a subset of D = {|bT
i
x| < ri, i = 1, · · · , p}, if we choose

c < min
1ip

r2
i

bT
i
P�1bi

(38)

• Whenever A = @f

@x
|x=0 is Hurwitz, we can estimate the region of attraction of the origin.
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3. (Example 3.14) Find the region of attraction of the following system?

ẋ1 = �x2 ẋ2 = x1 + (x21 � 1)x2

• The origin is asymptotically stable over the domain D = {kxk  r} because the linearized
matrix A is Hurwitz: (cf. eig(A) in matlab)

A =


0 �1
1 �1

�
�1,2(A) = �0.5± j

p
3

2

• A Lyapunov function can be found by taking Q = I and solving the Lyapunov equation
PA+ ATP = �I for P : (cf. lyap(A,eye(2,2)) in matlab)

P =


1.5 �0.5
�0.5 1

�

• The derivative of V (x) = xTPx along the trajectories of the system is given by

V̇ (x) = 2(1.5x1 � 0.5x2)ẋ1 + 2(�0.5x1 + x2)ẋ2

= �2(1.5x1 � 0.5x2)x2 + 2(�0.5x1 + x2)(x1 + (x21 � 1)x2)

= �(x21 + x22)� x21x2(x1 � 2x2)

• By using |x1|  kxk, |x1x2|  0.5kxk2 and |x1 � 2x2| 
p
5kxk, we have

V̇ (x)  �kxk2 + |x1||x1x2||x1 � 2x2|

 �kxk2 + 0.5
p

5kxk4

= �(1� 0.5
p

5kxk2)kxk2
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• Now we have the domain D = {kxk <
q

2
p
5
= 0.9457} satisfying V̇ (x)  0

• Furthermore, the invariant set ⌦c = {V (x) < c} satisfying V̇ (x)  0 is obtained by choos-
ing

c < min
kxk=r

xTPx = �min(P )r2 = 0.691⇥
2
p
5
⇡ 0.618 (39)

• Thus the set ⌦c with c = 0.61 is an estimate of the region of attraction.

4. (Example 3.15) Find the region of attraction of the following system?

ẋ1 = x2 ẋ2 = �4(x1 + x2)� h(x1 + x2)

where h is locally Lipschitz function that satisfies

h(0) = 0; uh(u) � 0 8 |u|  1

• Let us try the quadratic function

V (x) = xT

2 1
1 1

�
x = 2x21 + 2x1x2 + x22 > 0
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• Its derivative is obtained as

V̇ (x) = (4x1 + 2x2)ẋ1 + (2x1 + 2x2)ẋ2

= 4x1x
2 + 2x22 � 8(x1 + x2)

2
� 2(x1 + x2)h(x1 + x2)

= �2x21 � 6(x1 + x2)
2
� 2(x1 + x2)h(x1 + x2)

 �2x21 � 6(x1 + x2)
2

8 |x1 + x2|  1

= �xT

8 6
6 6

�
x < 0

• Now we can find the domain D = {|x1 + x2|  1} satisfying V̇ (x) < 0

• Furthermore, the invariant set ⌦c = {V (x)  c} satisfying V̇ (x) < 0 is obtained by choos-
ing

c = min
|x1+x2|=1

xTPx =
1

bTP�1b
= 1 (40)

because b = [1, 1]T .

• Thus the set ⌦c with c = 1 is an estimate of the region of attraction.

5. Estimating the region of attraction by ⌦c = {V (x) < c} is simple, but usually very conserva-
tive. It can be extended by examining the region satisfying V̇ (x)  0.
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(NC) 3.7 Converse Lyapunov Theorems

1. Theorems 3.3 and 3.6 establish asymptotic stability and exponential stability of the origin by
requiring the existence of Lyapunov function V (x) that satisfies certain conditions.

2. Converse Lyapunov Theorem would confirm that if the origin is asymptotically (or exponen-
tially) stable, then 9 V (x) that satisfies the conditions of Theorem 3.3 (or 3.6)

3. (Theorem 3.8) (Converse Lyapunov Theorem) Let x = 0 be an exponentially stable equilibrium
point for ẋ = f(x), where f is continuously differentiable on D = {kxk < r}. Let k,�, and r0 be
positive constants with r0 < r/k 3

kx(t)k  kkx(0)ke��t, 8 x(0) 2 D0 8t � 0

where D0 = {kxk < r0}. Then 9 a continuously differentiable function V (x) that satisfies the
inequalities

c1kxk
2
 V (x)  c2kxk

2 @V

@x
f(x)  �c3kxk

2

����
@V

@x

����  c4kxk

8 x 2 D0, with positive constants c1, c2, c3, and c4.
Moreover, if D = D0 = <

n and the origin is an exponentially stable equilibrium point, then 9

V (x) that satisfies the aforementioned inequalities 8 x 2 <
n.
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4. (Theorem 3.9) (Converse Lyapunov Theorem) Let x = 0 be an asymptotically stable equilib-
rium point for ẋ = f(x), where f is locally Lipschitz on a domain D ⇢ <

n that contains the
origin. Let RA ⇢ D be the region of attraction of x = 0. Then, 9 a smooth V (x) > 0 and a
continuous W (x) > 0, both defined for all x 2 RA 3

V (x) ! 1 as x ! @RA

@V

@x
f(x)  �W (x) 8 x 2 RA

and for any c > 0, {V (x)  c} is a compact subset of RA. When RA = <
n, V (x) is radially

unbounded.

• (HW # 3) solve 5 problems 3.1, 3.5, 3.6, 3.10, 3.13 (if you want, 3.12)
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