
4. Properties of Laplace Transforms (LT) (see Table A.1 in Appendix A (page 866))

a) Superposition

L[↵f1(t) + �f2(t)] =

Z 1

0
(↵f1(t) + �f2(t))e

�st
dt

= ↵

Z 1

0
f1(t)e

�st
dt+ �

Z 1

0
f2(t)e

�st
dt

= ↵F1(s) + �F2(s)

b) Time Delay f1(t) = t(t� �) with a time delay of �

F1(s) =

Z 1

0
f(t� �)e�st

dt with ⌘ = t� �

=

Z 1

0
f(⌘)e�s(�+⌘)

d⌘

= e
��s

Z 1

0
f(⌘)e�s⌘

d⌘

= e
��s

F (s)

c) Time Scaling f1(t) = f(at) with a scaling factor a

F1(s) =

Z 1

0
f(at)e�st

dt with ⌘ = at

=

Z 1

0
f(⌘)e�

s⌘
a
1

a
d⌘ with s

0 =
s

a

=
1

a
F (s0) =

1

a
F

⇣
s

a

⌘
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d) Shift in Frequency f1(t) = e
�at

f(t)

F1(s) =

Z 1

0
e
�at

f(t)e�st
dt

=

Z 1

0
f(t)e�(s+a)t

dt with s
0 = s+ a

= F (s0)

= F (s+ a)

e) Differentiation

L[f̈(t)] =
Z 1

0
f̈(t)e�st

dt =

Z 1

0
e
�st

f̈(t)dt

= e
�st

ḟ(t)
���
1

0
� (�s)

Z 1

0
e
�st

ḟ(t)dt

= e
�st

ḟ(t)
���
1

0
+ s


e
�st

f(t)
��1
0
� (�s)

Z 1

0
e
�st

f(t)dt

�

= 0� ḟ(0) + s [0� f(0) + sF (s)]

= s
2
F (s)� sf(0)� ḟ(0)

L[f (m)(t)] = s
m
F (s)� s

m�1
f(0)� s

m�2
ḟ(0)� · · ·� f

(m�1)(0)

where f
(m)(t) denotes the mth derivative w.r.t. time
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f) Integration f1(t) =
R
t

0 f(⌘)d⌘

F1(s) =

Z 1

0

Z
t

0
f(⌘)d⌘

�
e
�st

dt

=

Z
t

0
f(⌘)d⌘

�
e
�st

�s

����
1

0

�
Z 1

0
f(t)

e
�st

�s
dt

=
1

s
F (s)

g) Convolution f1(t) ? f2(t) =
R
t

0 f1(t� ⌧)f2(⌧)d⌧

L[f1(t) ? f2(t)] = F1(s)F2(s)

h) Time Product

L[f1(t)f2(t)] =
1

2⇡j
[F1(s) ? F2(s)]

i) Multiplication by Time f1(t) = tf(t) : F1(s) = L[tf(t)] = � d

ds
F (s)

d

ds
F (s) =

d

ds

Z 1

0
f(t)e�st

dt

=

Z 1

0
f(t)(�t)e�st

dt

= �
Z 1

0
[tf(t)]e�st

dt with f
0(t) = tf(t)

= �L[f 0(t)] = �L[tf(t)]
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5. Inverse Laplace Transform (LT) by Partial-Fraction Expansion

• Consider TF

F (s) =
b1s

m + b2s
m�1 + · · ·+ bms+ bm+1

sn + a1s
n�1 + · · ·+ an�1s+ an

= K
(s� z1)(s� z2) · · · (s� zm)

(s� p1)(s� p2) · · · (s� pn)

=
C1

s� p1
+

C2

s� p2
+ · · ·+ Cn

s� pn

where s = zi and s = pi are referred to as a zero and a pole of the TF, respectively.
• By multiplying both sides by the factor (s� p1), we can get C1 term as follow:

(s� p1)F (s) = C1 + C2
s� p1

s� p2
+ · · ·+ Cn

s� p1

s� pn
! C1 = (s� p1)F (s)|s=p1

Thus ith coefficient can be expressed in a similar form:

Ci = (s� pi)F (s)|s=pi for i = 1, 2, 3, · · · , n

where it is called the cover-up method.
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(Example 3.11, Partial-Fraction Expansion) Find y(t) from

Y (s) =
(s+ 2)(s+ 4)

s(s+ 1)(s+ 3)

=
C1

s
+

C2

s+ 1
+

C3

s+ 3

where

C1 =
(s+ 2)(s+ 4)

(s+ 1)(s+ 3)

����
s=0

=
8

3

C2 =
(s+ 2)(s+ 4)

s(s+ 3)

����
s=�1

= �3

2

C3 =
(s+ 2)(s+ 4)

s(s+ 1)

����
s=�3

= �1

6

The solution is obtained as follows:

) y(t) =
8

3
� 3

2
e
�t � 1

6
e
�3t for t � 0
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6. The Final Value Theorem

• Consider the LT of differentiation
Z 1

0
ẏ(t)e�st

dt = sY (s)� y(0)

lim
s!0

Z 1

0
ẏ(t)e�st

dt = lim
s!0

[sY (s)� y(0)]
Z 1

0
ẏ(t)dt = lim

s!0
[sY (s)� y(0)]

y(1)� y(0) = lim
s!0

[sY (s)� y(0)]

y(1) = lim
s!0

sY (s)

• If all poles of sY (s) are in the left half of the s-plane (or if Y (s) is stable), then

lim
t!1

y(t) = lim
s!0

sY (s)
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(Example 3.12) Find the final value y(1)?

Y (s) =
3(s+ 2)

s(s2 + 2s+ 10)

y(1) = lim
s!0

3(s+ 2)

s2 + 2s+ 10

=
6

10

= 0.6

(Example 3.13) Find the final value y(1)?

Y (s) =
3

s(s� 2)

y(1) 6= lim
s!0

3

s� 2
= �3

2
= �1.5

because the final value theorem is applied to the stable system, namely, in the case that all
poles are located on the left-hand side.
For example,

Y (s) =
3

s(s� 2)
=

�1.5

s
+

1.5

s� 2

y(t) = �1.5 + 1.5e2t for t � 0

y(1) = 1
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• DC gain is defined as the final value of the unit-step response for stable systems (Y (s) =
G(s)U(s) = G(s)1

s
)

DC gain = lim
s!0

sY (s) = lim
s!0

s


G(s)

1

s

�
= lim

s!0
G(s)

(Example 3.14, DC Gain) Find the DC gain of the following TF

G(s) =
3(s+ 2)

s2 + 2s+ 10

DC gain = lim
s!0

G(s) = 0.6
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7. Using Laplace Transform (LT) to Solve Differential Equation (DE)
(Example 3.15 Homogeneous DE) Find the solution of DE

ÿ(t) + y(t) = 0, where y(0) = ↵ ẏ(0) = �

s
2
Y (s)� y(0)s� ẏ(0) + Y (s) = 0

(s2 + 1)Y (s) = ↵s+ �

Y (s) =
↵s+ �

s2 + 1

Y (s) = ↵
s

s2 + 1
+ �

1

s2 + 1

y(t) = ↵ cos t+ � sin t for t � 0
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(Example 3.16 Forced DE) Find the solution of DE

ÿ(t) + 5ẏ(t) + 4y(t) = 3 · 1(t), where y(0) = ↵ ẏ(0) = �

[s2Y (s)� y(0)s� ẏ(0)] + 5[sY (s)� y(0)] + 4Y (s) =
3

s

(s2 + 5s+ 4)Y (s) =
3

s
+ ↵s+ (� + 5↵)

Y (s) =
↵s

2 + (� + 5↵)s+ 3

s(s+ 1)(s+ 4)

Y (s) =
C1

s
+

C2

s+ 1
+

C3

s+ 4

where

C1 =
3

4

C2 =
4↵ + � � 3

3

C3 =
3� 4↵� 4�

12

Thus

y(t) = C1 + C2e
�t + C3e

�4 for t � 0
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(Example 3.17 Forced Solution with Zero Initial Conditions) Find the solution of DE

ÿ(t) + 5ẏ(t) + 4y(t) = 2e�2t · 1(t), where y(0) = 0 ẏ(0) = 0

s
2
Y (s) + 5sY (s) + 4Y (s) =

2

s+ 2

(s2 + 5s+ 4)Y (s) =
2

s+ 2

Y (s) =
2

(s+ 1)(s+ 2)(s+ 4)

Y (s) =
C1

s+ 1
+

C2

s+ 2
+

C3

s+ 4

where

C1 =
2

3

C2 = �1

C3 =
1

3

Thus

y(t) =
2

3
e
�t � e

�2t +
1

3
e
�4t for t � 0
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8. Poles and Zeros

• Consider a rational TF as two kinds of form

H(s) =
b1s

m + b2s
m�1 + · · ·+ bms+ bm+1

sn + a1s
n�1 + · · ·+ an�1s+ an

= K
(s� z1)(s� z2) · · · (s� zm)

(s� p1)(s� p2) · · · (s� pn)

• If s = zi, then

H(s)|s=zi = 0

The zeros also correspond to the signal transmission blocking properties of the system and
are also called the transmission zeros of the system.

• If s = pi, then

H(s)|s=pi = 1

The poles of the system determine its stability properties.
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• Consider a rational TF as two kinds of form

H(s) =
b1s

m + b2s
m�1 + · · ·+ bms+ bm+1

sn + a1s
n�1 + · · ·+ an�1s+ an

! lim
s!1

H(s) =
b1

sn�m

= K
(s� z1)(s� z2) · · · (s� zm)

(s� p1)(s� p2) · · · (s� pn)

• The system is said to have n�m zeros at infinity if m < n because the TF approaches zero
as s approaches infinity. ! The system is said to be strictly proper

• No physical system can have n < m; otherwise it would have an infinite response at ! = 1.
! The system is said to be non-proper

• If zi = pj, then there are cancellations in the TF. ! It may lead to undesirable properties.
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9. Linear System Analysis using MATLAB
(Example 3.18), Matlab of (Example 2.1)

num = [0 0 0.001]
den = [1 0.05 0]
[z,p,k] = tf2zp(num,den)

(Example 3.21) Matlab of (Example 2.3)

s = tf(’s’)
sysG = 0.0002/sˆ2
t = 0:0.01:10
u1 = [zeros(1,500) 25*ones(1,10) zeros(1,491)]
[y1] = lsim(sysG, u1,t)
y1 = y1*(180/pi)
plot(t,u1)
plot(t,y1)

u2 = [zeros(1,500) 25*ones(1,10) zeros(1,100) -25*ones(1,10) zeros(1,381)]
[y2] = lsim(sysG, u2,t)
y2 = y2*(180/pi)
plot(t,u2)
plot(t,y2)
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