4. Properties of Laplace Transforms (LT) (see Table A.1 in Appendix A (page 866))

a) Superposition

Clafi(t) + Bh(0)] = / (i) + Bh()edt

—04/ fi(t) _Stdt+5/ fot)e *'dt

= ali(s) + BF(s)

b) Time Delay fi(t) =t(t — \) with a time delay of )

:/ f(t— Ne*dt with n=t—\

/ fn s(A+n) 4
/ f(n)e™"dn

— e E(s
¢) Time Scaling fi(t) = f(at) with a scaling factor «
= / ) f(at)e *'dt with 1 = at
/ f(n)e %ldn with s =
=6 =27 (3)
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d) Shift in Frequency fi(t) = e “f(t)

AG) - | e (et

/ fMe TGt with s =s+a

F(s
F

(s+a)

e) Differentiation

_ oo, —Std _ o st d
/0 f(t)e *dt /0 e ' f(t)dt

=)~ (o) [t
— e f(t )‘O + s [e )|, — (=) /Oooe—stf(t)dt]

=0—£(0)+s[0— f(0) + sF(s)]
= s°F(s) — sf(0) — £(0)
LI (@)] = s"F(s) — s" ' f(0) — s™ 2 f(0) — -~ — f1"D(0)

where f(™(t) denotes the mth derivative w.r.t. time
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f) Integration f;(t) fo

[ ey
([l
1

g) Convolution fi(t) x f2(¢) fo filt = 1) fo(T)dT
LIfi(t)  [2(1)] = Fi(s)F2(s)

h) Time Product

L [Fi(s) % Fy(s)

LIf1(t) ()] = 2

i) Multiplication by Time fi(t) =tf(t) : Fi(s) = L[tf(1)] = —LF(s)

= - / f(t)e *dt
/ ft)(—t)e *at

_ /O tf(O)e"dt with f(£) = tF(¢)
= —Lf'(t)] = —L[tf ()]

S
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5. Inverse Laplace Transform (LT) by Partial-Fraction Expansion

e Consider TF

L bis™ A+ bas™ T b 4 byS 4 by

F(S) n n—=1_ ...
s" 4+ a1s + +a,_15+ ay

:K(S_Zl)(S—ZQ)"‘(S_Zm)
(s =p1)(s—p2) - (s — pn)

Y Cs Cy,
S—p1 S— D2 S — Pn

where s = z; and s = p; are referred to as a zero and a pole of the TF, respectively.

e By multiplying both sides by the factor (s — p;), we can get C; term as follow:

(S_pl)F(S):Cl—i-CQS L0t H

n — Cr = (s —p1)F(s)|s=p,
o S L= (s = POF(S)]sy

Thus ith coefficient can be expressed in a similar form:
Ci = (5 = pi) F(5)|s=p, for i =1,2,3,---.,n

where it is called the cover-up method.
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(Example 3.11, Partial-Fraction Expansion) Find y(¢) from

where

B (s+2)(s+4)
YO = 6 )
4 Cy Cs
=+

S 3+1+3+3

C_(s—|—2)(s—|—4) 8
(s +3)],, 3

(s +2)(s+4) 3
2 = s(s+3) N

(5 4+2)(s+4) 1
= s(s+1) |y 6

The solution is obtained as follows:

for t>0
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6. The Final Value Theorem
e Consider the LT of differentiation

/0 " lt)edt = sY (s) — y(0)

lim y(t)e *dt = E_I%[SY(S) —y(0)]

[ ittt = timlsy(s) - y(o)
y(o0) = y(0) = lim[sY(s) —y(0)]

y(o0o) = lim sY (s)

s—0

e If all poles of sY(s) are in the left half of the s-plane (or if Y (s) is stable), then

lim y(t) = lim sY (s)

t—00 s—0

104



(Example 3.12) Find the final value y(c0)?

3 2
Y (s) = (s+2)
s(s? + 2s + 10)
: 3(s+2)
=1
y(20) 750 5% 1+ 25 + 10
6

~ 10
= 0.6

(Example 3.13) Find the final value y(c0)?

3
s(s — 2)
3 3

li —_2__15
y(o0) 7&55%5—2 5

Y(s) =

because the final value theorem is applied to the stable system, namely, in the case that all
poles are located on the left-hand side.

For example,

3 —1.5 1.5
Y pu— pr—
(5) s(s —2) s * s —2

y(t) = —1.5+1.5¢*  for t>0

y(oo) = 00
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e DC gain is defined as the final value of the unit-step response for stable systems (Y (s) =
G(s)U(s) = G(s)2)

DC gain = li_I% sY(s) = lims [G(s)ll = lim G(s)

s—0 S s—0

(Example 3.14, DC Gain) Find the DC gain of the following TF

o 3(s+2)

2425+ 10

DC gain = lim G(s) = 0.6
s—0

G(s)
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7. Using Laplace Transform (LT) to Solve Differential Equation (DE)
(Example 3.15 Homogeneous DE) Find the solution of DE

j(t) +y(t) =0, where y(0) =a y(0)=p

s*Y (s) —y(0)s — (0) + Y (s) =0
(*+1)Y(s)=as+ 8

as+
Vi(s) —
() s2 41
S 1
Vi(s) —
() as2+1+632+1

y(t) = acost + fsint  for t>0
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(Example 3.16 Forced DE) Find the solution of DE

y(t) +59(t) +4y(t) = 3-1(t), ~ where y(0) =a y(0) =4

(2 () — y(0)s — §(0)] + B[sY (s) — y(0)] + 4V (s) =

W »

(s +5s+4)Y(s) = ~+as+(B+5a)
as® + (B + 5a)s + 3

Y p—
&)= G+ D+ 0
@] Cy Cs
Yi(s) = 2
(S) S +s+1+s—|—4
where
3
Cl_i
4 -3
Cy — oz+35
3 — da — 48
Cs = 12
Thus

y(t) = C1 + Che '+ Cse™* for t>0
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(Example 3.17 Forced Solution with Zero Initial Conditions) Find the solution of DE

where

Thus

§i(t) + 5y(t) + 4y(t) =2¢7* - 1(t),  where y(0)=0 ¢(0)=0

2
2y 5sY 4Y (s) =
s7Y (s) 4+ 5sY (s) + 4Y (s) p—
2
2 4)Y (s) =
(s* 4+ 5s+4)Y(s) o~
Y (s) .
S) =
(s+1)(s+2)(s+4)
Ch Cy Cs
Y —
() s—|—1+s—|—2+s—|—4
2
01:§
Co = —1
1
Cg—§
_24_ —9t 1 At
y(t)—?)e e —|—3e for t>0
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8. Poles and Zeros

e Consider a rational TF as two kinds of form

L bys™ - bas™ T b 4 byys A+ by
st ta sl ta, 18 +a,
:K(s—zl)(s—zg)---(s—zm)

(s —=p1)(s —p2)- (s —pn)

H(s)

e If s = z;, then
H(s)|s=z =0

The zeros also correspond to the signal transmission blocking properties of the system and
are also called the transmission zeros of the system.

o If s =p,, then

H(s)|s=p; = 00

The poles of the system determine its stability properties.
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Consider a rational TF as two kinds of form

by s™ b m—1 b b
_ 1S + 28 + + m8+ m—+1 R lim H(S):
s"+as" T+ 4 a8+ ay 500 sn—m
:K(S—Zl)(s—ZQ)"'(S—Zm)
(s =p1)(s—p2) - (s —pn)

H(s)

The system is said to have n — m zeros at infinity if m < n because the TF approaches zero
as s approaches infinity. — The system is said to be strictly proper

No physical system can have n < m; otherwise it would have an infinite response at w = cc.
— The system is said to be non-proper

If z; = pj;, then there are cancellations in the TF. — It may lead to undesirable properties.
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9. Linear System Analysis using MATLAB
(Example 3.18), Matlab of (Example 2.1)

num = [0 0 0.001]
den = [1 0.05 0]
[z,p,k] = tf2zp (num,den)

(Example 3.21) Matlab of (Example 2.3)

s = tf("s’)

sysG = 0.0002/s"2

t = 0:0.01:10

ul = [zeros(1l,500) 25%xones(1,10) zeros(1l,491)]
[yl] = lsim(sysG, ul,t)

vyl = y1x(180/pi)

plot (t,ul)

plot (t,yl)

u2 = [zeros(1l,500) 25xones(1,10) zeros(l,100) —-25+xones(1l,10) =zeros(1l,381)]
[yv2] = lsim(sysG, u2,t)

y2 = y2*(180/pi)

plot (t,u2)

plot (t,y2)
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