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A First Analysis of Feedback

1 Basic Equations of Control

• For the open-loop control system of Fig. 4.1, the output, the error, and open-loop TF Yol(s)
R(s) have

the following forms:

Yol(s) = G(s)Dol(s)R(s) +G(s)W (s)

Eol(s) = R(s)� Yol(s)

= R(s)�G(s)Dol(s)R(s)�G(s)W (s)

= [1�G(s)Dol(s)]R(s)�G(s)W (s)

Tol(s) =
Yol(s)

R(s)
= G(s)Dol(s)
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• For the closed-loop control system of Fig. 4.2,

Ycl(s) =
G(s)Dcl(s)

1 +G(s)Dcl(s)
R(s) +

G(s)

1 +G(s)Dcl(s)
W (s)� G(s)Dcl(s)

1 +G(s)Dcl(s)
V (s)

Ecl(s) = R(s)� Ycl(s)

=
1

1 +G(s)Dcl(s)
R(s)� G(s)

1 +G(s)Dcl(s)
W (s) +

G(s)Dcl(s)

1 +G(s)Dcl(s)
V (s)

For simplicity, let us define two TFs as follows:

S =
1

1 +GDcl

T =
GDcl

1 +GDcl

Using above two TFs, we can rewrite the output and error

Ycl = TR +GSW � TV

Ecl = SR�GSW + TV

With these equations, we will explore four basic objectives of stability, tracking, regulation, and
sensitivity for both the open-loop and closed-loop cases.
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1. Stability

• Fundamental requirement for the control system is that all the poles of the TF should be
located in the left half-plane (LHP)

• For the open-loop case with G(s) = b(s)
a(s) and Dol(s) =

c(s)
d(s)

G(s)Dol(s) =
b(s)c(s)

a(s)d(s)

it cannot be stable if either a(s) or d(s) may have roots in the right half-plane (RHP)

• For the closed-loop case with G(s) = b(s)
a(s) and Dcl(s) =

c(s)
d(s) , the characteristic equation becomes

1 +G(s)Dcl(s) = 0 ! 1 +
b(s)c(s)

a(s)d(s)
= 0 ! a(s)d(s) + b(s)c(s) = 0

unlike the open-loop case, having a pole of a(s) in the RHP does not prevent the design of a
feedback controller that will make the system stable.

• For example (Governor problem by Maxwell), G(s) = 1
s2�1 and Dcl =

K(s+�)
s+�

,

(s2 � 1)(s+ �) +K(s+ �) = 0 ! s
3 + �s

2 + (K � 1)s+K� � � = 0
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Using Routh stability criterion:

s
3 : 1 (K � 1)

s
2 : � (K� � �)

s
1 : (K � 1)� (K� � �)

�

s
0 : K� � �

the stability conditions are obtained as follows:

K >
�

�
and � > � > 0

Simple solution is to take � = 1 (stable cancellation) and then the resultant second-order
system can be easily solved to place the remaining two poles at any point desired.

s
2 + (� � 1)s+ (K � �) = 0 ! s

2 + 2⇣!ns+ !
2
n
= 0

For the analysis of the control performance,

!n =
p
K � � ⇣ =

� � 1

2
p
K � �

On the contrary, for the design of controller

� = 2⇣!n + 1 K = !
2
n
+ 2⇣!n + 1
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2. Tracking

• Tracking is to cause the output to follow the reference input as closely as possible.

• In the open-loop case,

Dol(s) =
1

G(s)

a) In order to physically build it, the controller TF must be proper
b) The engineer must not get greedy and request an unrealistically fast design
c) Although one can stably cancel any pole in the LHP, the sensitivity can be bad.

• For example, with G(s) = 1
s2+3s+9 and Dcl(s) = c2s

2+c1s+c0

s(s+d1)
, solve for the parameters of this
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controller so that the closed-loop will have the characteristic equation (s+6)(s+3)(s2+3s+9)

1 +G(s)Dcl(s) = 0

1 +
1

s2 + 3s+ 9

c2s
2 + c1s+ c0

s(s+ d1)
= 0

(s2 + 3s+ 9)s(s+ d1) + c2s
2 + c1s+ c0 = (s+ 6)(s+ 3)(s2 + 3s+ 9)

(s2 + 3s+ 9)(s2 + d1s+ c2) = (s+ 6)(s+ 3)(s2 + 3s+ 9) with
c1

c2
= 3

c0

c2
= 9

where d1 = 9, c2 = 18, c1 = 54 and c0 = 162

• For example, find the steady-state error for the step response with magnitude A

Ycl(s) =
G(s)Dcl(s)

1 +G(s)Dcl(s)
R(s)

=
1

s2+3s+9
c2s

2+c1s+c0

s(s+d1)

1 + 1
s2+3s+9

c2s
2+c1s+c0

s(s+d1)

A

s

=
c2s

2 + c1s+ c0

s4 + (3 + d1)s3 + (9 + 3d1 + c2)s2 + (9d1 + c1)s+ c0

A

s

ycl(1) = lim
s!0

sYcl(s) = A

ecl(1) = A� ycl(1) = 0
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3. Regulation

• Regulation is to keep the error small when the reference is at most a constant set-point and
disturbances are present.

• In the closed-loop case, the error TF is described by

Ecl(s) =
1

1 +G(s)Dcl(s)
R(s)� G(s)

1 +G(s)Dcl(s)
W (s) +

G(s)Dcl(s)

1 +G(s)Dcl(s)
V (s)

• Consider the TF from the disturbance to the error G(s)
1+G(s)Dcl(s)

, we should make Dcl(s) as large
as possible, to make the disturbance effect small.

• Consider the TF from the sensor noise to the error G(s)Dcl(s)
1+G(s)Dcl(s)

, if we select Dcl(s) to be large,
it tends to unity and sensor noise is not reduced at all.

• Most disturbances exist at low frequency and Sensor noise has high frequency components.
Using this information, we design the controller TF to be large at the low frequencies to
reduce the disturbance effect and we will make it small at the higher frequencies to reduce
the sensor noise effect.
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4. Sensitivity

• Assume that the plant changes G(s) ! G(s) + �G(s) in operation.

• In open-loop case,

Tol(s) + �Tol(s) = Dol(G(s) + �G(s)) ! Tol = DolG(s) �Tol(s) = Dol�G(s)

The sensitivity of a TF Tol(s) to a plant G(s) is defined to be the ratio of the fractional change
in Tol(s) to the fractional change in G(s)

S
Tol
G

=
�Tol

Tol

�G

G

=
G

Tol

�Tol

�G
=

1

Dol

Dol = 1

where it means that 10% error in G would yield 10% error in Tol in the open-loop case.

225



• In closed-loop case, �Tcl is complex to be handled.

Tcl + �Tcl =
Dcl(G+ �G)

1 +Dcl(G+ �G)
! Tcl =

DclG

1 +DclG
�Tcl =

Dcl(G+ �G)

1 +Dcl(G+ �G)
� Tcl (?)

On the other hand, the first order variation is proportional to the derivative

�Tcl

�G
=

dTcl

dG
=

Dcl(1 +DclG)�DclGDcl

(1 +DclG)2
=

Dcl

(1 +DclG)2

The sensitivity of a TF Tcl(s) to a plant G(s) is found as following form:

S
Tcl
G

=
�Tcl

Tcl

�G

G

=
G

Tcl

�Tcl

�G
=

G

Tcl

dTcl

dG
=

1 +DclG

Dcl

Dcl

(1 +DclG)2
=

1

1 +DclG

For example, if the gain is such that 1 +GDcl = 100, 10% change in plant gain G will cause
only a 0.1% change in the steady-state gain.
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• In feedback control, the error in overall TF gain is less sensitive to variations in the plant
gain by a factor of S = 1

1+GDcl
compared to errors in open-loop control gain.

• Sensitivity function for a feedback system is defined as

S , 1

1 +GDcl

In addition, the complementary sensitivity function (equal to the closed-loop TF) is defined
as

T , 1� S =
GDcl

1 +GDcl

Also it is marked in mind that

S + T = 1
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