(Question on Chapter 2) Determine DoF of the following spatial parallel mechanism?
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3 Rigid-Body Motions and Twists

e Representations for rigid-body configurations and velocities are derived, similary to rotations and
angular velocities.

e Homogeneous transformation matrix 7' € ®** is analogous to the rotation matrix R € R3*3
e Screw axis S € R0 is analogous to a rotation axis @ € R?
e Twist V = S0 € K6 is analogous to an angular velocity &f € R

e Exponential coordinates SO € RY for rigid-body motions are analogous to exponential coordinates
wh € N3 for rotations.
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3.1 Homogeneous Transformation Matrices

Consider representations for the combined orientation and position of a rigid body.

e A natural choice would be to use a rotation matrix R € SO(3) to represent the orientation of the
body frame {b} in the fixed frame {s} and a vector p € R* to represent the origin of {b} in {s}.

e Rather than identifying R and p separately, we package them into a single matrix T as follows.
e Single matrix 7" will sometimes be denoted (R, p).

Definition 3.4. The special Euclidean group SFE(3), also known as the group of rigid-body motions or
homogeneous transformation matrices in R, is the set of all 4 x 4 real matrices T of the form

1 T2 T3 D1
R p
O3x1 1

_|T21 T22 T23 D2

T —

31 T32 T33 P3
0O 0 0 1

where R € SO(3) and p € R is a column vector.

Definition 3.5. The special Euclidean group SE(2) is in the set of all 3 x 3 real matrices T of the form

ri1 T2 P1 cosf —sinf p;
R p .
T = = |ro1 799 po| = |[sinf cosf po
Oax1 1
0O 0 1 0 0 1

where R € SO(2), p € R? is a column vector, and 0 € [0, 27).
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Properties of Transformation Matrices

The following three properties confirm that SF(3) is a group.

Proposition 3.8. The inverse of a transformation matrix T € SE(3) is also a transformation matrix,
and it has the following form:

R p
03x1 1

]%T __]%Tp
03x1 1

T =

Proposition 3.9. The product of two transformation matrices is also a transformation matrix.

Proposition 3.10. The multiplication of transformation matrices is associative, so that (1115)T5 = T1(15T3),
but generally not commutative: T\T5 # T51.
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If ‘1’ is appended to z € R?, making it a four-dimensional vector, the following computation can be
performed as a single matrix multiplication:

R p
0 1

X

1

Rx+p
1

X

1

T

where the vector [27,1]7 is the representation of z in “homogeneous coordinates”, and accordingly T €
SE(3) is called a homogenous transformation. When, by an abuse of notation, we write 7z, we mean
Rz + p.

Proposition 3.11. Given T = (R,p) € SE(3) and z,y € R, the following hold:
1 |Te = Tyl| = 2 — yll, where ||z = VaTz.
2. <Tax—Tz,Ty—Tz>=<zx—2,y—2>, where < z,y >=z2"y.
e T is regarded as a transformation on points in R?
e T transforms a point x to Tx.
e T preserves distances, while 7" preserves angles.

o If 2.y, 2 € N represent the three vertices of a triangle, then the triangle formed by the trans-
formed vertices {7,,7,,7.} has the same set of lengths and angles as those of the triangle {z,y, 2}
(the two triangles are said to be isometric).

e Taking {z,y,z} to be the points on a rigid body, {7,,7,,T.} represents a displaced version of the
rigid body.

e SE(3) can be identified with rigid-body motions.
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Uses of Transformation Matrices

As was the case for rotation matrices, there are three major uses for a transformation matrix 7" :
1. to represent the configuration (position and orientation) of a rigid body. (representation)
2. to change the reference frame in which a vector or frame is represented. (operator)

3. to displace a vector or frame. (operator)
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Figure 3.14: Three reference frames in space, and a point v that can be represented
in {b} as v, = (0,0,1.5).

Representing a configuration

Let us consider the fixed frame {s} is coincident with {a} and the frames {a}, {b}, and {c}, represented
by Tso = (Rsas Psa), Tsp = (Rsp, psp) and Ty = (R, psc), respectively, and the locations of the origin of each
frame relative to {s} can be written

1 00 0 0 0 1 0 —1 0 0 —1
Rsa =101 0 Psa = 0 Rsb =10 -1 0 Dsb = —2 Rsc — 0 01 Pse = 1
001 0 1 0 O 0 0 10 0

Any frame can be expressed relative to any other frame, for example, 7,. = (R, psc) represents {b}
relative to {c}

0O 1 0 0
Rbc — 0 0 —1 DPbe = -3
—1 0 0 —1

It can also be shown using previous Proposition that T,, = 7},' for any two frames {b} and {c}.
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Changing the reference frame of a vector or a frame
By a subscript cancellation rule analogous to that for rotations, for any three reference frames {a},
{b}, and {c}, and any vector v expressed in {b} as v,

Top Ty = Ta}fT}{c = Tge.

Tapvy = Toyvy = Vg

where v, is the vector v expressed in {a}.
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Displacing (rotating and translating) a vector or a frame

e A transformation matrix 7', viewed as the pair (R,p) = (Rot(®,0),p), can act on a frame Ty, by
rotating it by 6 about an axis @ and translating it by p.

e Let us extend the 3 x 3 rotation operator R = Rot(w,0) to a 4 x 4 transformations matrices that
rotates without translating and translates without rotating, respectively

100 p,
R 0 010
Rotat(w,0) = b Trans(p) = by
O3x1 1 001 p.
0001
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e The fixed-frame transformation (corresponding to pre-multiplication by T'(R(w, ), p)) can be inter-
preted as first rotating the {b} frame by 6 about an axis @ in the {s}, then translating it by p in
the {s}

Te = TTg = Transl(p)Rotat(w, 0)Tg fixed frame

R p RRsb Rpsb+p
0 1 0 1

Rsb Dsb
0 1

e The body-frame transformation (corresponding to post-multiplication by T'(R(w,#),p)) can be in-
terpreted as first translating the {b} frame by p considered to be in the {b} frame, then rotating
about @ in the the new body frame.

Tay = TaT = TgTransl(p)Rotat(w, 6) body frame

R p
0 1

RsbR Rsbp + Dsb
0 1

Rsb Dsb
0 1

e (In the previous lecture) Pre-multiplying by R = Rot(w, ) yields a rotation about an axis @ con-
sidered to be in the fixed frame, and post-multiplying by R yields a rotation about & considered
as being in the body frame.

Ry = rotate by R in {s} frame (R,,) = RR
Ry = rotate by R in {b} frame (R,) = R4R
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Figure 3.15: Fixed-frame and body-frame transformations corresponding to & =
(0,0,1), 8 = 90°, and p = (0,2,0). (Left) The frame {b} is rotated by 90° about Zs
and then translated by two units in §, resulting in the new frame {b’}. (Right) The
frame {b} is translated by two units in §, and then rotated by 90° about its Z axis,
resulting in the new frame {b"}.

0 -100 0 0 1 0]

1 0 0 -1 0 -2
T =T(Rot(w,0),p) = Transl(p) Rotat(w, ) = Ty =

0 0 10 1 0 0 0

0 0 01 0 0 0 1

New frame {b’} achieved by a fixed-frame transformation 77, and the new frame {b”} achieved by a
body-frame transformation 7,7 are given by

010 2 (0 0 1 0
) 0012 ) 1 0 0 —4
TTg = Transl(p)Rotat(w,0)Tgy = Ty = ToT = TyTransl(p)Rotat(w, 0) = Tgy =
1 000 0O -1 0 O
0001 0O 0 0 1
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Figure 3.16: Assignment of reference frames.

Example 3.2. A robot arm mounted on a wheeled mobile platform moving in a room, and a camera
fixed to the ceiling. Find T,. ? (in order to calculate how to move the robot arm so as to pick up the
object, the configuration of the object relative to the robot hand)

e Frame {b} is attached to the wheeled platform

e Frame {c} is attached to the end-effector of the robot arm

e Frame {d} is attached to the camera.

e A fixed frame {a} is established and the robot must pick up an object with body frame {e}

o The transformations Ty, and T, can be calculated from measurements obtained with the camera.
e The transformation Ty. can be calculated using the arm’s joint-angle measurements.

e The transformation T,, is assumed to be known in advance.

TabTbcTce — adee — Tce — (TabTbc)ilTadee — (TadebTbc)ilTadee
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