
(Question on Chapter 2) Determine DoF of the following spatial parallel mechanism?
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3 Rigid-Body Motions and Twists
• Representations for rigid-body configurations and velocities are derived, similary to rotations and

angular velocities.

• Homogeneous transformation matrix T ∈ ℜ4×4 is analogous to the rotation matrix R ∈ ℜ3×3

• Screw axis S ∈ ℜ6 is analogous to a rotation axis ω̂ ∈ ℜ3

• Twist V = S θ̇ ∈ ℜ6 is analogous to an angular velocity ω̂θ̇ ∈ ℜ3

• Exponential coordinates Sθ ∈ ℜ6 for rigid-body motions are analogous to exponential coordinates
ω̂θ ∈ ℜ3 for rotations.
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3.1 Homogeneous Transformation Matrices
Consider representations for the combined orientation and position of a rigid body.

• A natural choice would be to use a rotation matrix R ∈ SO(3) to represent the orientation of the
body frame {b} in the fixed frame {s} and a vector p ∈ ℜ3 to represent the origin of {b} in {s}.

• Rather than identifying R and p separately, we package them into a single matrix T as follows.

• Single matrix T will sometimes be denoted (R, p).

Definition 3.4. The special Euclidean group SE(3), also known as the group of rigid-body motions or
homogeneous transformation matrices in ℜ3, is the set of all 4× 4 real matrices T of the form

T =

[
R p

03×1 1

]
=


r11 r12 r13 p1

r21 r22 r23 p2

r31 r32 r33 p3

0 0 0 1


where R ∈ SO(3) and p ∈ ℜ3 is a column vector.

Definition 3.5. The special Euclidean group SE(2) is in the set of all 3× 3 real matrices T of the form

T =

[
R p

02×1 1

]
=


r11 r12 p1

r21 r22 p2

0 0 1

 =


cos θ − sin θ p1

sin θ cos θ p2

0 0 1


where R ∈ SO(2), p ∈ ℜ2 is a column vector, and θ ∈ [0, 2π).
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Properties of Transformation Matrices

The following three properties confirm that SE(3) is a group.

Proposition 3.8. The inverse of a transformation matrix T ∈ SE(3) is also a transformation matrix,
and it has the following form:

T−1 =

[
R p

03×1 1

]−1
=

[
RT −RTp

03×1 1

]

Proposition 3.9. The product of two transformation matrices is also a transformation matrix.

Proposition 3.10. The multiplication of transformation matrices is associative, so that (T1T2)T3 = T1(T2T3),
but generally not commutative: T1T2 ̸= T2T1.
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If ‘1’ is appended to x ∈ ℜ3, making it a four-dimensional vector, the following computation can be
performed as a single matrix multiplication:

T

[
x

1

]
=

[
R p

0 1

][
x

1

]
=

[
Rx+ p

1

]

where the vector [xT , 1]T is the representation of x in “homogeneous coordinates”, and accordingly T ∈
SE(3) is called a homogenous transformation. When, by an abuse of notation, we write Tx, we mean
Rx+ p.

Proposition 3.11. Given T = (R, p) ∈ SE(3) and x, y ∈ ℜ3, the following hold:

1. ∥Tx− Ty∥ = ∥x− y∥, where ∥x∥ =
√
xTx.

2. < Tx− Tz, Ty − Tz >=< x− z, y − z > , where < x, y >= xTy.

• T is regarded as a transformation on points in ℜ3

• T transforms a point x to Tx.

• T preserves distances, while T preserves angles.

• If x, y, z ∈ ℜ3 represent the three vertices of a triangle, then the triangle formed by the trans-
formed vertices {Tx, Ty, Tz} has the same set of lengths and angles as those of the triangle {x, y, z}
(the two triangles are said to be isometric).

• Taking {x, y, z} to be the points on a rigid body, {Tx, Ty, Tz} represents a displaced version of the
rigid body.

• SE(3) can be identified with rigid-body motions.
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Uses of Transformation Matrices

As was the case for rotation matrices, there are three major uses for a transformation matrix T :

1. to represent the configuration (position and orientation) of a rigid body. (representation)

2. to change the reference frame in which a vector or frame is represented. (operator)

3. to displace a vector or frame. (operator)
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Representing a configuration
Let us consider the fixed frame {s} is coincident with {a} and the frames {a}, {b}, and {c}, represented
by Tsa = (Rsa, psa), Tsb = (Rsb, psb) and Tsc = (Rsc, psc), respectively, and the locations of the origin of each
frame relative to {s} can be written

Rsa =


1 0 0

0 1 0

0 0 1

 psa =


0

0

0

 Rsb =


0 0 1

0 −1 0

1 0 0

 psb =


0

−2
0

 Rsc =


−1 0 0

0 0 1

0 1 0

 psc =


−1
1

0


Any frame can be expressed relative to any other frame, for example, Tbc = (Rbc, pbc) represents {b}
relative to {c}

Rbc =


0 1 0

0 0 −1
−1 0 0

 pbc =


0

−3
−1


It can also be shown using previous Proposition that Tcb = T−1bc for any two frames {b} and {c}.
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Changing the reference frame of a vector or a frame
By a subscript cancellation rule analogous to that for rotations, for any three reference frames {a},
{b}, and {c}, and any vector v expressed in {b} as vb,

TabTbc = Ta�bT�bc = Tac.

Tabvb = Ta�bv�b = va

where va is the vector v expressed in {a}.
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Displacing (rotating and translating) a vector or a frame

• A transformation matrix T , viewed as the pair (R, p) = (Rot(ω̂, θ), p), can act on a frame Tsb by
rotating it by θ about an axis ω̂ and translating it by p.

• Let us extend the 3 × 3 rotation operator R = Rot(ω̂, θ) to a 4 × 4 transformations matrices that
rotates without translating and translates without rotating, respectively

Rotat(ω̂, θ) =

[
R 01×3

03×1 1

]
Trans(p) =


1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1



72



• The fixed-frame transformation (corresponding to pre-multiplication by T (R(ω̂, θ), p)) can be inter-
preted as first rotating the {b} frame by θ about an axis ω̂ in the {s}, then translating it by p in
the {s}

Tsb′ = TTsb = Transl(p)Rotat(ω̂, θ)Tsb fixed frame

=

[
R p

0 1

][
Rsb psb

0 1

]
=

[
RRsb Rpsb + p

0 1

]

• The body-frame transformation (corresponding to post-multiplication by T (R(ω̂, θ), p)) can be in-
terpreted as first translating the {b} frame by p considered to be in the {b} frame, then rotating
about ω̂ in the the new body frame.

Tsb′′ = TsbT = TsbTransl(p)Rotat(ω̂, θ) body frame

=

[
Rsb psb

0 1

][
R p

0 1

]
=

[
RsbR Rsbp+ psb

0 1

]

• (In the previous lecture) Pre-multiplying by R = Rot(ω̂, θ) yields a rotation about an axis ω̂ con-
sidered to be in the fixed frame, and post-multiplying by R yields a rotation about ω̂ considered
as being in the body frame.

Rsb′ = rotate by R in {s} frame (Rsb) = RRsb

Rsb′′ = rotate by R in {b} frame (Rsb) = RsbR
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T = T (Rot(ω̂, θ), p) = Transl(p)Rotat(ω̂, θ) =


0 −1 0 0

1 0 0 2

0 0 1 0

0 0 0 1

 Tsb =


0 0 1 0

0 −1 0 −2
1 0 0 0

0 0 0 1


New frame {b’} achieved by a fixed-frame transformation TTsb and the new frame {b”} achieved by a
body-frame transformation TsbT are given by

TTsb = Transl(p)Rotat(ω̂, θ)Tsb = Tsb′ =


0 1 0 2

0 0 1 2

1 0 0 0

0 0 0 1

 TsbT = TsbTransl(p)Rotat(ω̂, θ) = Tsb′′ =


0 0 1 0

−1 0 0 −4
0 −1 0 0

0 0 0 1


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Example 3.2. A robot arm mounted on a wheeled mobile platform moving in a room, and a camera
fixed to the ceiling. Find Tce ? (in order to calculate how to move the robot arm so as to pick up the
object, the configuration of the object relative to the robot hand)

• Frame {b} is attached to the wheeled platform

• Frame {c} is attached to the end-effector of the robot arm

• Frame {d} is attached to the camera.

• A fixed frame {a} is established and the robot must pick up an object with body frame {e}

• The transformations Tdb and Tde can be calculated from measurements obtained with the camera.

• The transformation Tbc can be calculated using the arm’s joint-angle measurements.

• The transformation Tad is assumed to be known in advance.

TabTbcTce = TadTde → Tce = (TabTbc)
−1TadTde = (TadTdbTbc)

−1TadTde
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