
2. Transfer Function (TF) and Frequency Response

• Definition of Laplace Transform (LT) for any causal LTI system with t � 0

L[y(t)] = Y (s) =

Z 1

0
y(t)e�st

dt

If we apply the LT to convolution integral, we have by using t� ⌧ = ⌘:

Y (s) =

Z 1

0

Z 1

0
u(t� ⌧)h(⌧)d⌧

�
e
�st

dt

=

Z 1

0

Z 1

0
u(t� ⌧)e�st

dt

�
h(⌧)d⌧

=

Z 1

0

Z 1

�⌧

u(⌘)e�s(⌧+⌘)
d⌘

�
h(⌧)d⌧

=

Z 1

0

Z 1

0
u(⌘)e�s⌘

d⌘

�
h(⌧)e�s⌧

d⌧

=

Z 1

0
h(⌧)e�s⌧

d⌧

� Z 1

0
u(⌘)e�s⌘

d⌘

�

= H(s)U(s)

where U(s) is the LT of input signal and H(s) is the LT of impulse response,
• Transfer Function (TF) of the system is defined as the LT of impulse response of the system
• TF is the ratio between LT of input and LT of output signals assuming zero initial conditions.

H(s) =
Y (s)

U(s)
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• It is noted that the convolution integral is replaced by a simple multiplication of the LT.
• Consider LT of the unit impulse function

L[�(t)] =
Z 1

0
�(t)e�st

dt =

Z 0+

0�
�(t)dt = 1

Thus the TF of the system H(s) is equal to the LT of the impulse response b/c U(s) = 1

H(s) = Y (s) when the input has the form of unit impulse

• LT of the differentiation

L[ẏ(t)] =
Z 1

0
ẏ(t)e�st

dt =

Z 1

0
e
�st

ẏ(t)dt

= e
�st

y(t)
��1
0
� (�s)

Z 1

0
e
�st

y(t)dt

= 0� y(0) + s

Z 1

0
y(t)e�st

dt

= sY (s)� y(0)
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(Example 3.4, TF) Compute the TF of ẏ + ky = u with zero initial conditions.

L[ẏ + ky] = L[u] ! L[ẏ] + kL[y] = L[u] ! sY (s)� y(0) + kY (s) = U(s)

H(s) =
Y (s)

U(s)
=

1

s+ k

• (Example 3.5, TF of RC Circuit) Compute the TF of RC circuit

Ri(t) + y(t) = u(t) and i(t) = C
dy(t)

dt

Take the LT with zero initial condition

RI(s) + Y (s) = U(s) and I(s) = C(sY (s)� y(0)) = CsY (s)

Then we have

RCsY (s) + Y (s) = U(s) ! H(s) =
Y (s)

U(s)
=

1

RCs+ 1
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• LT of real exponential function e
�at

L[e�at] =

Z 1

0
e
�at

e
�st

dt

=

Z 1

0
e
�(s+a)t

dt

= � 1

s+ a
e
�(s+a)t

����
1

0

=
1

s+ a

• LT of complex exponential function e
�j!t

L[e�j!t] =

Z 1

0
e
�j!t

e
�st

dt

=

Z 1

0
e
�(j!+s)t

dt

= � 1

s+ j!
e
�(s+j!)t

����
1

0

=
1

s+ j!
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• Euler theorem (ej✓ = cos ✓ + j sin ✓) and sinusoidal (cosine and sine) functions

e
j!t = cos!t+ j sin!t

e
�j!t = cos!t� j sin!t

By summing the above and dividing by half, we have the definition of cosine function

cos!t =
e
j!t + e

�j!t

2

By subtracting the above and dividing by 2j, we have the definition of sine function

sin!t =
e
j!t � e

�j!t

2j

• LT of the sinusoidal functions

L[cos!t] = 1

2

⇢
1

s� j!
+

1

s+ j!

�

=
1

2

2s

s2 + !2

=
s

s2 + !2

L[sin!t] = 1

2j

⇢
1

s� j!
� 1

s+ j!

�

=
1

2j

2j!

s2 + !2

=
!

s2 + !2
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(Example 3.6, 3.7, Complete response (=transient + steady state response)) Obtain the output
of the system H(s) = 1

s+1 when the input u(t) = sin 10t for t � 0 is applied ?

U(s) = L[sin 10t] = 10

s2 + 100

The output response is

Y (s) = H(s)U(s) =
1

s+ 1

10

s2 + 100

=
a

s+ 1
+

bs+ c

s2 + 100
with three unknowns a, b, c

=
10

101

⇢
1

s+ 1
+

�s+ 1

s2 + 100

�

=
10

101

⇢
1

s+ 1
� s

s2 + 100
+

1

s2 + 100

�

=
10

101

1

s+ 1
� 10

101

s

s2 + 100
+

1

101

10

s2 + 100

Take the inverse LT

y(t) =
10

101
e
�t � 10

101
cos 10t+

1

101
sin 10t for t � 0
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• Frequency response (main topic of chapter 6) is defined as the steady-state response when
the sinusoidal input is applied. In other words, the transient responses are ignored.

• From previous example, the frequency response can be obtained by ignoring the transient
response as follow:

yss(t) =
1

101
sin 10t� 10

101
cos 10t

=
1p
101

sin(10t� tan�1 10)

=
1p
101

sin(10t� 84.3�) for t � 0

where A sin!t+B cos!t =
p
A2 +B2 sin(!t+ �) and � = tan�1 B

A
.

• Indeed, steady-state response due to the sinusoidal input u(t) = A sin!t is obtained as

yss(t) = A|H(j!)| sin(!t+ \H(j!))

This means that if a system represented by the TF H(s) has a sinusoidal input with mag-
nitude A, the output will be sinusoidal at the same frequency with magnitude A|H(j!)| and
will be shifted in phase by the angle \H(j!), where |H(j!)| is call as magnitude ratio and
\H(j!) as phase difference.
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• For example, if H(s) = 1
s+1 and u(t) = sin 10t, then the magnitude ratio and the phase differ-

ence at a specific frequency ! = 10[rad/s] are

|H(j!)| =
����

1

j! + 1

���� =
1p

!2 + 1
=

1p
101

\H(j!) = \ 1

j! + 1
= � tan�1

! = � tan�1 10 = �84.3�

we have the frequency response as follow:

u(t) = sin 10t ! yss(t) =
1p
101

sin(10t� 84.3�)

along with

u(t) = A sin!t ! yss(t) = A|H(j!)| sin(!t+ \H(j!))
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3. The L� Laplace Transform (LT)

• One-sided (or unilateral) LT with the complex variable s = � + j!

F (s) =

Z 1

0�
f(t)e�st

dt

where it is noted that L+ Laplace Transform (LT) is defined

F (s) =

Z 1

0+
f(t)e�st

dt =

Z 1

0�
f(t)e�st

dt�
Z 0+

0�
f(t)e�st

dt =

Z 1

0�
f(t)e�st

dt�
Z 0+

0�
f(t)dt

• Two-sided LT

F (s) =

Z 1

�1
f(t)e�st

dt

• Inverse LT

f(t) =
1

2⇡j

Z
�c+j1

�c�j1
F (s)estds

where �c is a selected value to the right of all the singularities of F (s) in the s-plane.
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(Example 3.8, Step and Ramp) Find the LT of the step a · 1(t) and ramp bt · 1(t)

F1(s) =

Z 1

0
ae

�st
dt

= �ae
�st

s

����
1

0

= 0� �a

s

=
a

s

F2(s) =

Z 1

0
bte

�st
dt

= �bte
�st

s

����
1

0

�
Z 1

0
�be

�st

s
dt

= �bte
�st

s

����
1

0

+ �be
�st

s2

����
1

0

=
b

s2

• see Table A.2 in Appendix A (page 867)
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