

최 영 진

교수 핵심역량 내용

- 소속 직위 : 공학대학 전자공학부 교수
- 최종 학위: 포항공과대학교 기계공학 박사 (로봇제어전공)
- E-mail : cyj@hanyang.ac.kr ■ 연구실 전화번호 : 031-400-5232
- 연구실 홈페이지 : http://biorobotics.hanyang.ac.kr

연구 키워드

로봇	제어	매니퓰레이터	로봇 핸드	로봇 그리퍼
웨어러블 로봇	바이오센서시스템	생체모사	텐세그리티	메커니즘

연구목표

- 공압 및 텐던 혼합구동을 이용한 로봇 시스템 개발
- 접이식 하이브리드 구동 소프트로봇 기술을 활용한 협력 보조 로봇팔 개발
- 시촉각 센싱기반 그리퍼 개발
- 착용형 로봇 개발
- 전기차 충전 로봇 시스템 개발
- 가속도 연속성을 고려한 S-curve 기반 모션 플래닝 기술 개발

주요 연구 경력 및 역량

- 한국로봇학회 부회장 (현)
- IEEE Robotics and Automation Letters, Senior Editor (현)
- IEEE Transactions on Robotics, Associate Editor (전)
- 한국과학기술연구원(KIST) 지능로봇연구센터 선임연구원 (전)
- University of Central Florida, 전기컴퓨터공학부, 방문연구원 (전)
- Youngjin Choi, "PID Control Design for Robotic Manipulator", Hanyang University Press, 120P, ISBN 978-89-7218-643-4 (95560), Dec. 16, 2019
- Dukchan Yoon, and Youngjin Choi, "Analysis of Fingertip Force Vector for Pinch-Lifting Gripper with Robust Adaptation to Environments", IEEE Transactions on Robotics, vol. 37, No. 4, pp. 1127-1143, Aug., 2021

융합연구 희망분야

■ 로봇 메커니즘 및 제어 알고리즘 개발

■ 내재 유연성을 갖는 메커니즘을 연구하여 로봇-인간의 협업작업 안정성 확보

로봇 메커니즘

로봇 제어

■ 전기모터 전류제어를 기반으로 한 힘제어를 적용

물체 인식

■ 비전기반 물체인식을 통해 물체의 6차원 정보를 획득

센서

 인체에서 생성되는 근육 신호를 측정하는 방법을 개발

주요연구분야

- 유연 로봇 메커니즘 연구 (텐세그리티 중심)
- 전류 기반 힘 제어 알고리즘 연구 (인간-로봇 상호작용에서의 안정성 확보)
- 비전기반 물체인식 및 물체 자세 정보 획득방법 연구
- 근전도 및 초음파 등을 이용한 센서 개발

연구내용

유연 로봇 메커니즘 연구

로봇 핸드

로봇 그리퍼

생체모사

모바일 매니퓰레이터

바이오닉 의수

바이오닉 팔

로봇 힘 제어 알고리즘 연구

웨어러블 보행 의도 파악

양팔 로봇 매니퓰레이션

Youngjin Choi

Core competencies

- Prof., Sch. of Elec. Eng., College of Eng. Sci. • Final degree : Ph.D. in Robotics (POSTECH)
- E-mail : cyj@hanyang.ac.kr • Office Phone: 031-400-5232
- Homepage: http://biorobotics.hanyang.ac.kr

Research Keywords

Robot	Control	Manipulator	Robot Hand	Robot Gripper
Wearable Robot	Biosensor	Biomimetics	Tensegrity	Mechanism

Research Objectives

- Development of Robot System Using Pneumatic and Tendon Mixed Operation
- Development of Cooperative Assistive Robot Arm using Foldable Hybrid Drive Soft Robot Technology
- Development of a Gripper Based on the Sensing of the Tactile
- Development of wearable robots
- Development of Electric Vehicle Charging Robot System
- Development of Motion Planning Technology Based on S-curve Acceleration Continuity

Brief Research Experience

- Korea Robotics Society, Vice-president
- IEEE Robotics and Automation Letters. Senior Editor
- IEEE Transactions on Robotics, Associate Editor
- Korea Institute of Science and Technology, Intelligent Robotics Research Center, Senior Research Scientist
- University of Central Florida, EECS, Visiting Scholar
- Youngjin Choi, "PID Control Design for Robotic Manipulator", Hanyang University Press, 120P, ISBN 978-89-7218-643-4 (95560), Dec. 16, 2019
- Dukchan Yoon, and Youngjin Choi, "Analysis of Fingertip Force Vector for Pinch-Lifting Gripper with Robust Adaptation to Environments", IEEE Transactions on Robotics, vol. 37, No. 4, pp. 1127-1143, Aug., 2021

Collaborative Research Fields

Robot Mechanism and Control Algorithm

 Securing the intrinsic stability of robot-human collaboration by the mechanisms with inherent flexibility

Control

 Application of force control based on electric motor current control

Recognition

 Obtaining 6D pose information of an object through object recognition

 Developing a new way to measure bio-signals produced by the human body

주요연구분야

- Flexible Robotics Mechanism Study (Centered by Tensegrity)
- Electrical current-Based Force Control Algorithm Study (Securing Stability in Human-Robot Interactions)
- A Study on the Method of Object Identification and Object Posture Information
- Development of Sensors using Electromyography and Ultrasonic Waves

Research Topics

Compliant Robotic Mechanism

Biomimetic Arm

Robot Gripper

Robot Hand

Mobile Manipulator

Bionic Hand

Bionic Arm

Robot Control Algorithm

Motion Intent-based Walking Assist

Dual Arm Manipulation

14

15