Solutions of Midterm Exam

Subject : Control System Engineering 2, Lecturer : Prof. Youngjin Choi,
Date : Oct. 27, 2020 (Contact e-mail : cyj@hanyang.ac.kr)

Problem 1 (20pt) Determine the stability properties of the following closed-loop system using Nyquist criterion?
where it is noted that K > 0.
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Solution of Problem 1 (20pt) Let us draw Nyquist plot of the following:
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Thus, it is
e stable when K > 1because Z =P+ N =0withP=1, N = -1
e neutral stable when K =1

e unstable when 0 < K < 1because Z =P+ N =2withP=1,N =1



Problem 2 (20pt) Find the phase crossover frequency wy,, the gain margin GM, the gain crossover frequency wy,
and the phase margin PM of the following closed-loop system? where G(s) = 4=
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Solution of Problem 2 (20pt)
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Problem 3 (20pt) For given system G(s) = m, we wish to meet a steady-state error requirement for a unit-

ramp input (K, = 10), furthermore, to assure the phase margin of PM = 40°. Design the lag compensation

D.(s) = KB ;;S:;ll satisfying two specifications? where 5 > 1.
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Solution of Problem 3 (20pt) D.(s) = K Lstl = K 21
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Thus, we have
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Problem 4 (20pt) Find the state description matrices in the control canonical form and the modal canonical form

of the following transfer function, respectively?
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Solution of Problem 4 (20pt)
1. For the control canonical from,
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Problem 5 (20pt) For given system

1. Find the control law that places the closed-loop poles of the system so that they are both at —2 ?

2. Find the output y(¢) of the closed-loop control system with initial conditions z1(0) = 1 and z3(0) = 0?

Solution of Problem 5 (20pt)

1. Let us apply the control law

w=— [Kl KQ} ﬁj

Then the desired characteristic equation should be equal to a.(s) = (s + 2)?2
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By comparing both sides, we have

K1:3

2. Closed-loop control system is obtained as
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If we assume A. = A — BK, the state vector can be found as
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let us use the matrix exponential

s _1 S+42 1 .
eACt — £_1[[sl— Ac]—l] — £—1 — E_l (sJ_rZ) (s+§2)
4 s+4 GT2)? (522

we have
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