Solutions of Final Exam

Subject : Control System Engineering 2, Lecturer : Prof. Youngjin Choi,
Date : Dec. 15, 2020 (Contact e-mail : cyj@hanyang.ac.kr)

Problem 1 (20pt) Consider the electric circuit shown in the figure.

(1.1) Write the state equations for the circuit, where the input «(¢) is a current, and the output y(¢) is a voltage.

Let xl(t) = ’iL(t> and .’lﬁg(t) = ’Uc(t).

(1.2) What condition(s) on R, L, and C will guarantee that the system is controllable
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Solution of Problem 1 (20pt)

(1.1) By applying KCL and KVL, we have

. dv, dig, L dv, o dv,
U71L+Cdt LE+R1L700+RCdt yfRCdt
u=x1+ Clo Li1+ Rx1 = 20 + RCio y = RCs
by = — a1 + = R — “Rui+ R

To = Cl‘l CU Tr = I X1 Lxg Lu Yy = sl U
Therefore,
_2rR 1 R
NP
To -C 0 xro C
X
y = {—R 0} [ "1+ Ru
Z2
(1.2) Controllability matrix
R 2R 1
_ _|I C
o=[p ap]=|L 1
C LC
if the following is satisfied, then the system is controllable
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Problem 2 (25pt) Consider a system with state equation

= Ax + Bu y=Cx

where
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The system steady-state error performance can be made robust by augmenting the system with an integrator
and using unity feedback; that is, by setting #; = y — r, where z; is the state of the integrator. To see this, find
state feedback Ky = [Ko1, Ko2] and K; of the form u = —Kyz — K 27 so that the poles of the augmented system
are at —3; —2 1+ 53.

Solution of Problem 2 (25pt)

1. Since z; = Cx — r, we have
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2. Here, since u = —Kgi1x1 — Kogoxs — K127, We get
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3. By using the pole placement,
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4. Therefore
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Problem 3 (25pt) Consider the following compensator

(3.1) Determine the sampling time 7' from w, = 25 X wp,, Where w, implies sampling rate and w,, means a
bandwidth.

(3.2) Find the approximate model using Tustin’s method ?
(3.3) Find the approximate model using ZOH ?
(3.4) Find the approximate model using MPZ ?

(3.5) Find the approximate model using MMPZ (modified MPZ) ?

Solution of Problem 3 (25pt)

(3.1) Since wy,, = 5[rad/s|, the sampling time should be chosen as
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(3.2) Tustin’s method
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Problem 4 (30pt) Consider the relay function with hysteresis shown in the below figure.

(4.1) Find the describing function (equivalent gain) for this nonlinearity when u = a sin wt, where the output is a
square wave with amplitude N as long as the input amplitude « is greater than the hysteresis level h.
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(4.2) Find the amplitude and the frequency of the limit cycle? where N =1 and h = 0.1

1
0.1 Gl = s(s+ 1)

Solution of Problem 4 (30pt)

(4.1) The describing function is obtained from the first harmonic components as follow:

by + jaq

DF = K.q(a) = o

1. From the figure, it is seen that the square wave lags the input in time. The lag time can be calculated

as the time when
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2. Let us calculate a; as follow:
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3. Let us calculate b; as follow:

by = /o u(t) sin(wt)d(wt)
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4. We finally obtain

(4.2) The characteristic equation for stability is as follow:

14+ Keg(a)G(s) =0 —  Gjw) = _Keq(a)

1. The negative reciprocal of the describing function for the hysteresis nonlinearity is
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2. This is a straight line parallel to the real axis that is parameterized as a function of the input signal

amplitude ¢ and is also plotted in the following figure
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3. We can also determine the limit-cycle information analytically:
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4. By solving above equations,
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we can get the solutions

wp = 2.2 and a; = 0.24



