5 Control Law Design for Full-State Feedback

e The purpose of the control law is to allow us to assign a set of pole locations for the closed-loop
system that will correspond to satisfactory dynamic response in terms of rise time and other mea-
sures of transient response.

e If the full state is not available, the next step is to design an estimator (sometimes called an ob-
server), which computes an estimate of the entire state vector when provided with the measure-
ment of the system.

e The third step consists of combining the control law and the estimator. See Fig. 7.11
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Compensation

e The final step is to introduce the reference input in such a way that the plant output will track
external commands with acceptable rise-time, overshoot, and settling-time values.
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e (7.5.1) Finding the Control Law

1. The control law is defined as feedback of a linear combination of the state variables

1

T2
u:—Kx:—[Kl Ky --- Kn}

where it is called “full-state feedback”

2. The closed-loop system under above control becomes

T = Ax + Bu
= Arx — BKx
= (A— BK)x

3. The characteristic equation of the closed-loop system is
det[s] — A+ BK| =0

4. If the desired characteristic equation is given as following form, then the required elements
of K are obtained by matching both equations:

ac(s) = (s —s1)(s —s2) (s — s,) = det[s] — A+ BK]

where s, s9,--- ,s, are the desired poles locations.
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5. (Example 7.14) Find the control law that places the closed-loop poles of the system so that
they are both at —2w,.

X2

Let us apply the control law

w=— [Kl Kg} tj

Then the desired characteristic equation should be equal to a.(s) = (s + 2w,)?

L)

=+ Kys+ K, +w§ = 52+4w08+4wg = a.(s)

s 0
0 s

0 1

2
—w; 0

0

det[s[—A—l—BK]det{[ +

By comparing both sides, we have

Ky = 4w, K = 3w’
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6. Using the control canonical form (CCF): consider the following TF

Y(s) bis" 4 bes" P44 b, X (s)
U(s) s"+a1s"t+ag+s"24 - +a, X(s)

Then we have

U(s)=(s"4+a1s" " +ag+5" 2+ 40a,)X(5) = s"X(s) +a15" ' X(s) +--- +a,X(s)
Y(s) = (18" '+ bos" 24 -+ b,) X (5) = bys" X () + -+ b, X (s)

Let us define the states as follows:

x, = X(s)
Tpo1 = sX(s) Tp = Tp_1
Tpo = "X (s) dip—1 = Tn_a
Ty = 5" 72X (s) T3 = X9
T = s""1X(s) Ty = X1
i1 = s"X(s) = —a15" ' X(s) — -+ —a, X(s) + U(s) T1 = —a1T1 — GoTy — +++ — ApTy + U
y =b1s" 1 X(s) 4 -+ b, X(s) y = bix1 + bowo + -+ - + by,
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_—Cll —Qy e - —Cln_
1 0 e --- 0
0 1 0 0
0
0 0 1 0 |
C. = [bl by v - bn:|
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7. Determinant of s/ — A. + B.K,. is obtained as

y — -

a4y —ay - - —ay, 1
1 0 -+ - 0 0
det(sI — A, + B.K,.) =det< sl — | 0 1 0 --- 0 o |K; Ky K3 ---
0 :
. o o -1 o] |of
_s—l—al—l—Kl as+ Ko oo - an+Kn_
—1 S
= det 0 —1 S
s
0 0 -1 |
= 5"+ (a1 + K1)s" ' + (a2 + Ko)s" 2 + -+ + (an + K,
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8. If the desired pole locations result in the characteristic equation given by

ao(s) = s" + aps" ! 4 s

_|_ . _|_ &n
then the control gains can be found as follows:

Kl =0 —

Ky =as —as

Kn:an_an

9. For given any A and B matrices, Ackermann’s formula provides easy way to solve the control
gain problem:

K= [0 0 -+ 0 1} Ca(A)
where the controllability matrix C and «.(A)

C— [B AB A’B ... An—lB}

a.(A) = A"+ A" AP T

in which «; are the coefficients of the desired characteristic polynomial.
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10. (Example 7.15) Find the control law that places the closed-loop poles of the system so that
they are both at —2w,. Use Ackermann’s fomula.

HE

a(8) = (54 2w, )? = 8% + 4wys + 4w?

0
1

T

+ U

X2

First step is to construct a.(s)

Second step

ao(A) = A% + dw,A + 4w’

1

+ 4w, + 4w?

10| | 3w, 4w,
01 —4w? 3w?

2 2
0 —w; —w; 0

Third step is to find the controllability matrix C

C:[B AB]=

Final step is to find the gain matrix

K = [o 1} Cac(A)

= {Swg 4w0}
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11. Uncontrollable systems have certain modes, or subsystems, that are unaffected by the con-
trol. This usually means that parts of the system are physically disconnected from the in-
put. It can be checked from the rank of the controllability matrix. In other words, the system
having any uncontrollable mode loses rank of the controllability matrix. For example,

S+ 2,

Gls) = (s+3)(s +4)

if z, = 3 or 4, then the controllability matrix loses rank.

12. On the other hand, if z, = 2.99, the controllability must be full, but it requires larger gain
such as K = [2052.5, —688.1]. (It is called weakly controllable)

— The system has to work harder and harder to achieve control as controllability slips away.
— To move the poles a long way requires large gains.

e (Example 7.16)
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