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e Vector margin is defined to be the distance to the —1 + j0 point from the closest approach of the
Nyquist plot
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e (Example 6.12) Determine the stability property as a function of K

Figure 6.40

System in which
increasing gain leads
from instability to

stability: (a) root locus;

(b) Nyquist plot
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e (Example 6.13)

G(s) =

85(s + 1)(s* + 2s + 43.25)
- s2(s2 4 25+ 82)(s2 + 25+ 101)

At w, =0.75,9.0, and 10.1rad/s, PM’s become 37%, 80, 407} =.

Figure 6.41
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Example 6.13
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5 Bode’s Gain-Phase Relationship

e For any stable minimum phase system, the phase of G(jw) is uniquely related to the magnitude

of G(jw)

e Adjust the slope of the magnitude curve |KG(jw)| so that it crosses over magnitude 1 (=0dB) with
a slope of -1 (=-20dB/decade) for a decade around gain crossover frequency w,

o (Example 6.14) Design K and Tp of PD controller satisfying w, = 0.2 and PM = 75°

Figure 6.45
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1. Phase margin at the gain crossover frequency

1
PM = 180° + tan™! Tpw, — 180° = tan™' Tpw, = 75° —  Tp=—tan75° = 18.66

2. Gain crossover frequency w,

Figure 6.47
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6 Closed-Loop Frequency Response

e Consider a system in which |KG(jw)| shows the typical behavior

IKG(jw)|>1  for w<w,
IKG(jw)| <1  for w> w,

where w. is the crossover frequency. The magnitude of closed-loop frequency response is approx-

imated by
, KG(jw) 1 for w<w,
T = | g =4 L
+ (Jw) |[KG(jw)] for w> w,
Figure 6.50
Closed-loop bandwidth JKGGo)l P
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e The graph shows that the bandwidth for smaller values of PM is typically somewhat greater than
w., though usually it is less than 2w,.; thus

we < wpw < 2w,

O



