3 Design using Discrete Equivalents

e It is important to remember that how to convert D.(s) into Dy(z) is approximation; there is no
exact solution for all possible inputs because D.(s) responds to the complete time history of e(t),
whereas D;(z) has access to only the samples e(kT).

e (8.3.1) Tustin’s Method

1. Tustin’s method is a digitization technique that approaches the problem as one of numerical
integration. Suppose

which is integration. Therefore, it is corresponding to the trapezoidal integration as follows:

w(kT) = /O " et /k Y

T-T
= u(kT — T) + area under ¢(t) over last period, T
le(k —1) + e(k)]

u(k) =ulk—-1)+T 5

where T is the sample period.

e(t)

kI—=T kT t
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. Taking z-transform,

U(z) Tl4z"! 1

E(z) 21—z1

21—2"1
T14z71

. In fact, the Tustin’s method approximates z = ¢*7 as follows:

21— 271
-
T1+ 271

where it can be derived from the Taylor’s series expansions as follows:

g e 1+ T4y 14D 94T L 22
Zz =€ — — ~ — ~ —
er 1-L4 s —L 24T Tz+1
. For D.(s) = =%~ as an example, we have
Da(2) = U(z) a B al(1+ 271 B al(1+ 271
T ER) g 4a 20— 4al(1+2Y) (2+al) - (2—al) !
(24 aT)u(k) — (2 —aT)u(k — 1) = aT[e(k) + e(k — 1)]
(2 —aT) al
k) = —ulk—1)+ ——le(k kE—1
(k) = 5o 1 = D+ Gy ) + etk = 1)
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5. (Example 8.1) Determine the difference equation with a sample rate of 25 times bandwidth
using Tustin’s approximation.

s/2+1

Dy(s) = 102"~
(5) s/10+1

Since the bandwidth is approximately w,; = 10[rad/s|, the sampling rate should be

s 11
Wy =25 X wyg = 250[rad/s]  —  f, = ;"— SO 5 T == = 0025
s S
The difference TF can be obtained as
1l 4 5(1—27Y) 4+ 5T (1 + 27Y)
Dy(z) = 10_{ 11+7271 = 1) 5T o
BT 1421 +
= (1+T)—(1-T)z" _ 1.025—-0.975z"" 45556 — 43.3332""
A 45T) - (1-5T)2z"t L1125 — 0875271 1—0.778271

Finally, the difference equation is

u(k) = 0.778u(k — 1) + 45.556[e(k) — 0.951e(k — 1)]

21



Position, y

Control, u

Digital controller

1.4
1.? 7 ~
0.8 / -
0.6 (/ Continuous controller
0.4 //
0.2
ol
0O 02 04 06 08 1 12 14 16 18 2
Time (sec)
(a)
50
40 I
30 1 Digital controller
1 |
%8 v Continuous controller
0
-10 ——
-20
0 02 04 06 08 1 12 14 16 18 2
Time (sec)
(b)
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e (8.3.2) Zeroth-Order Hold (ZOH) Method
1. Tustin’s method essentially assumed that the input to the controller varied linearly early
between the past sample and the current sample.

2. Another assumption is that the input to the controller remains constant throughout the sam-
ple period. — ZOH

3. One input sample produces a square pulse of height e(k) that lasts for one sample period 7.

4. For a constant positive step input, e(k), at time k, E(s) = e(k)/s, so the result would be

Dulz) = 2 <D0(5)>

S

Furthermore, a constant negative step, one cycle delayed, would be

Dy(2)=27"Z <DC_(S)>

S

Therefore, the discrete TF for the square pulse is

Dy(z) = (1-=2"")Z <D0(3)>

S
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5. (Example 8.2) Determine the difference equation with a sample period 7" = 0.025[s] using
ZOH approximation.

s/2+1 _ | 5s+10

Du(s) =107 2 —
() =100 s+ 10

The discrete TF using ZOH with a7 = 0.25 and ¢ %7 = 0.779 is

Da(z) =101 - 22 (%) =100 -27)z <s ot s(sl+010))

B 5 271 — e02)
=10(1—27") <1 0251 + (1—2D(1 - 6—0.252—1))
o (B

(1 —2"1)(1—e025;2-1)
_ 90— 47.79271
- 1—-0.779z71!

Or,

Dy(z) =10(1—z"")Z (%) =10(1-2"1Z2 (é ty fm)

= 10(1 — 27) (1 _12_1 +— e_‘f)a%_l)
R Rt st

50— 4779z
1 —0.77921
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Position, y

Control, u

Finally, the difference equation is

u(k) = 0.779u(k — 1) + 50e(k) — 47.79¢(k — 1)
= 0.779u(k — 1) + 50[e(k) — 0.956¢(k — 1)]

1.5
| - Digital controller
1 Continuous controller
0.5
0
0 02 04 06 038 1 12 14 16 18 2
Time (sec)
60
40
Digital controller
20
Continuous controller
0 _ = -
=20
0 02 04 06 038 1 12 14 16 18 2

Time (sec)
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e (8.3.3) Matched Pole-Zero (MPZ) Method

1.

2.

Another digitization method, called the matched pole-zero (MPZ) method, is suggested by
matching the poles and zeros between s and z planes, using z = e*’.

Because physical systems often have more poles than zeros, it is useful to arbitrarily add
zeros at z = —1, resulting in a (1 + 271) term in Dgy(z2).
a) Map poles and zeros according to the relation z = e*7

b) If the numerator is of lower order than the denominator, add powers of (1 + 27!) to the
numerator until numerator and denominator are of equal order.

c) Set the DC or low frequency gain of D,(z) equal to that of D.(s).

. For example, the MPZ approximation

s+a 1 —e Ty
D.(s) = KCS 7

where K, is found by the DC-gain
lim D.(s) = KC% = lim Dy(z) = Ky

Thus the result is
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4. As another example, the MPZ approximation

) . 1 2_1 1 — e—aTZ—l
+ Dd(Z) = Kdél __|— 2_1321 _ €_bTZ_1;

Dels) = KeZrmy

where K, is found by the DC-gain by deleting the pure integration term both sides
2(1 — e T
limsD.(s) = ch = lim(z — 1)Dy(2) = de

The result is

a [1—e T
Ki=K,— | —
! 2b (1 — e—“T>
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5. (Example 8.3) Design a digital controller to have a closed-loop natural frequency w, = 0.3
and a damping ratio ( = 0.7 using MPZ digitization

Let us assume that the lead compensator is used

Du(s) = Kcsib
S a

Then, we have the characteristic equation

s+b
1 D.(s)=1+K,——
+ G(s)D.(s) -+ (s 1 a)

ae(s) = (5% +0.425 + 0.09)(s + 1.58) = s® 4 25% 4 0.75365 + 0.1422

= s> +as’+ K.s+ Kb

with a =2, b =0.19 = 0.2, and K. = 0.7536 ~ 0.81. Now we have the lead compensator:

s+ 0.2

De(s) = 081———

Let us determine the sampling rate and sampling period as follows:

ws = 0.3 x 20 = 6rad/s]  — fsz;u—swl[Hz] —  T=1]3
m
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Plant output

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

The MPZ digitization yields

1 — e 02,1 1—0.818z""
Dy(2) = K, = K
a(2) A 21 1013521

where the final value theorem gives

0.2 1 —-10.818
Bl— = Kj——— K4 =0.
0.8 5 1T 0130 — a=0.385

The difference equation becomes
u(k) = 0.135u(k — 1) + 0.385[e(k) — 0.818e(k — 1)]

For the step responses,

X

Vi S

o

10 15 20 25 30

Time (sec)

Continuous design

»>&>>x Discrete equivalent design, 7= 1 sec

o—o—o—o—o Discrete equivalent design, 7= 0.5 sec
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e (8.3.4) Modified Matched Pole-Zero (MMPZ) Method

1. Modify Step 2 in the MPZ so that the numerator is of lower order than denominator by 1.
For example, if

s+ a
D.(s) = K,
() = Kooy
we skip Step 2 to get
21 — e Tz a (1—etT
= K, h Ki=K.—~ | ——=
Da(z) d(l — 2z (1 — e tTz1) where fd b <1 — e—aT>

We can see the difference equation as follow:
u(k) = (1+ e Mk —1) — e Tu(k —2) + Kyle(k — 1) — e Te(k — 2)]

where it makes use of e(k — 1) that are one cycle old, not e(k).
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e (8.3.5) Comparison of Digital Approximation Methods

1. Let us compare four approximation methods with the sampling rate

5%
D, =
(5) s+ 5
2. Tustin’s method
Du(2) 5 5T(1+ 271 5T + 5T 21
z) = — =
’ 2Lat g5 21—z )+ 5T(1+271)  (2457) — (2—5T)z"!

B < 5T ) 14 271

 \245T 1—(3;—25)24

D) = -2 (2) sz (2 — - e

s(s+5)

4. MPZ

1+271 2
Dd(z) = Kdl(— 6_5TZ)_1 where Kd— =1

1 —eT
B 1 —e 57T 14+ 271
- 2 1 —e5Tx1
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5. MMPZ

z7 ! 1
Dd(Z) = Kdl ol where Kdm =1
Z_l
= (1—e )

1 — 6_5TZ_1

6. It is noted that Tustin and MPZ bring the similar structures each other, while ZOH and
MMPZ show the similar structures, as shown in Table 8.2

7. Tustin and MPZ methods show a notch at w,/2 because of their zero at z = —1 from 1 + 27!
term.
T = Yssec T = Y% sec
w, = 100 rad/sec w, = 20 rad/sec

|D,(2)]
! MMPZ

ID,(2) N MPZ
//Tuslin’s,
MPZ

D.(s) \D‘.cs-)

0.5 5 50 w (rad/sec) 0.5 5 50  w (rad/sec)
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e (8.3.6) Applicability Limits of the Discrete Equivalent Design Method

- W =

The system can often be unstable for rates slower than approximately 5wy, and
the damping would be degraded significantly for rates slower than about 10w,
At sample rates > 20w, design by discrete equivalent yields reasonable results, and

at sample rates of 25 times the bandwidth or higher, discrete equivalents can be used with
confidence.

ZOH brings T/2 delay in the control system. A method to account for the 7'/2 delay is to
include an approximation of the delay into the original plant model:

2/T
s+2/T

Gzou(s) =

220)



