
3 Design using Discrete Equivalents

• It is important to remember that how to convert Dc(s) into Dd(z) is approximation; there is no
exact solution for all possible inputs because Dc(s) responds to the complete time history of e(t),
whereas Dd(z) has access to only the samples e(kT ).

• (8.3.1) Tustin’s Method

1. Tustin’s method is a digitization technique that approaches the problem as one of numerical
integration. Suppose

U(s)

E(s)
= Dc(s) =

1

s

which is integration. Therefore, it is corresponding to the trapezoidal integration as follows:

u(kT ) =

Z kT�T

0
e(t)dt+

Z kT

kT�T
e(t)dt

= u(kT � T ) + area under e(t) over last period, T ,

u(k) = u(k � 1) + T
[e(k � 1) + e(k)]

2

where T is the sample period.
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2. Taking z-transform,

U(z)

E(z)
=

T

2

1 + z�1

1� z�1
=

1
2
T
1�z�1

1+z�1

3. In fact, the Tustin’s method approximates z = esT as follows:

s ⇡
2

T

1� z�1

1 + z�1

where it can be derived from the Taylor’s series expansions as follows:

z = esT =
e

sT
2

e�
sT
2

=
1 + sT

2 + s2T 2

22 + · · ·

1� sT
2 + s2T 2

22 � · · ·
⇡

1 + sT
2

1� sT
2

=
2 + sT

2� sT
! s ⇡

2

T

z � 1

z + 1

4. For Dc(s) =
a

s+a as an example, we have

Dd(z) =
U(z)

E(z)
=

a
2
T
1�z�1

1+z�1 + a
=

aT (1 + z�1)

2(1� z�1) + aT (1 + z�1)
=

aT (1 + z�1)

(2 + aT )� (2� aT )z�1

(2 + aT )u(k)� (2� aT )u(k � 1) = aT [e(k) + e(k � 1)]

u(k) =
(2� aT )

(2 + aT )
u(k � 1) +

aT

(2 + aT )
[e(k) + e(k � 1)]
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5. (Example 8.1) Determine the difference equation with a sample rate of 25 times bandwidth
using Tustin’s approximation.

Dc(s) = 10
s/2 + 1

s/10 + 1

Since the bandwidth is approximately !bd = 10[rad/s], the sampling rate should be

!s = 25⇥ !bd = 250[rad/s] ! fs =
!s

2⇡
⇡ 40[Hz] ! T =

1

fs
=

1

40
= 0.025[s]

The difference TF can be obtained as

Dd(z) = 10
1
T
1�z�1

1+z�1 + 1
1
5T

1�z�1

1+z�1 + 1
= 10

5(1� z�1) + 5T (1 + z�1)

(1� z�1) + 5T (1 + z�1)

= 50
(1 + T )� (1� T )z�1

(1 + 5T )� (1� 5T )z�1
= 50

1.025� 0.975z�1

1.125� 0.875z�1
=

45.556� 43.333z�1

1� 0.778z�1

Finally, the difference equation is

u(k) = 0.778u(k � 1) + 45.556[e(k)� 0.951e(k � 1)]
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• (8.3.2) Zeroth-Order Hold (ZOH) Method

1. Tustin’s method essentially assumed that the input to the controller varied linearly early
between the past sample and the current sample.

2. Another assumption is that the input to the controller remains constant throughout the sam-
ple period. ! ZOH

3. One input sample produces a square pulse of height e(k) that lasts for one sample period T .
4. For a constant positive step input, e(k), at time k, E(s) = e(k)/s, so the result would be

Dd(z) = Z

✓
Dc(s)

s

◆

Furthermore, a constant negative step, one cycle delayed, would be

Dd(z) = z�1
Z

✓
Dc(s)

s

◆

Therefore, the discrete TF for the square pulse is

Dd(z) = (1� z�1)Z

✓
Dc(s)

s

◆
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5. (Example 8.2) Determine the difference equation with a sample period T = 0.025[s] using
ZOH approximation.

Dc(s) = 10
s/2 + 1

s/10 + 1
= 10

5s+ 10

s+ 10

The discrete TF using ZOH with aT = 0.25 and e�aT = 0.779 is

Dd(z) = 10(1� z�1)Z

✓
5s+ 10

s(s+ 10)

◆
= 10(1� z�1)Z

✓
5

s+ 10
+

10

s(s+ 10)

◆

= 10(1� z�1)

✓
5

1� e�0.25z�1
+

z�1(1� e�0.25)

(1� z�1)(1� e�0.25z�1)

◆

= 10(1� z�1)

✓
5(1� z�1) + z�1(1� e�0.25)

(1� z�1)(1� e�0.25z�1)

◆

=
50� 47.79z�1

1� 0.779z�1

Or,

Dd(z) = 10(1� z�1)Z

✓
5s+ 10

s(s+ 10)

◆
= 10(1� z�1)Z

✓
1

s
+

4

s+ 10

◆

= 10(1� z�1)

✓
1

1� z�1
+

4

1� e�0.25z�1

◆

= 10(1� z�1)

✓
(1� e�0.25z�1) + 4(1� z�1)

(1� z�1)(1� e�0.25z�1)

◆

=
50� 47.79z�1

1� 0.779z�1
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Finally, the difference equation is

u(k) = 0.779u(k � 1) + 50e(k)� 47.79e(k � 1)

= 0.779u(k � 1) + 50[e(k)� 0.956e(k � 1)]
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• (8.3.3) Matched Pole-Zero (MPZ) Method

1. Another digitization method, called the matched pole-zero (MPZ) method, is suggested by
matching the poles and zeros between s and z planes, using z = esT .

2. Because physical systems often have more poles than zeros, it is useful to arbitrarily add
zeros at z = �1, resulting in a (1 + z�1) term in Dd(z).
a) Map poles and zeros according to the relation z = esT

b) If the numerator is of lower order than the denominator, add powers of (1 + z�1) to the
numerator until numerator and denominator are of equal order.

c) Set the DC or low frequency gain of Dd(z) equal to that of Dc(s).
3. For example, the MPZ approximation

Dc(s) = Kc
s+ a

s+ b
Dd(z) = Kd

1� e�aTz�1

1� e�bTz�1

where Kd is found by the DC-gain

lim
s!0

Dc(s) = Kc
a

b
� lim

z!1
Dd(z) = Kd

1� e�aT

1� e�bT

Thus the result is

Kd = Kc
a

b

✓
1� e�bT

1� e�aT

◆
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4. As another example, the MPZ approximation

Dc(s) = Kc
s+ a

s(s+ b)
Dd(z) = Kd

(1 + z�1)(1� e�aTz�1)

(1� z�1)(1� e�bTz�1)

where Kd is found by the DC-gain by deleting the pure integration term both sides

lim
s!0

sDc(s) = Kc
a

b
� lim

z!1
(z � 1)Dd(z) = Kd

2(1� e�aT )

1� e�bT

The result is

Kd = Kc
a

2b

✓
1� e�bT

1� e�aT

◆

224



5. (Example 8.3) Design a digital controller to have a closed-loop natural frequency !n = 0.3
and a damping ratio ⇣ = 0.7 using MPZ digitization

G(s) =
1

s2

Let us assume that the lead compensator is used

Dc(s) = Kc
s+ b

s+ a

Then, we have the characteristic equation

1 +G(s)Dc(s) = 1 +Kc
s+ b

s2(s+ a)
= s3 + as2 +Kcs+Kcb

↵c(s) = (s2 + 0.42s+ 0.09)(s+ 1.58) = s3 + 2s2 + 0.7536s+ 0.1422

with a = 2, b = 0.19 ⇡ 0.2, and Kc = 0.7536 ⇡ 0.81. Now we have the lead compensator:

Dc(s) = 0.81
s+ 0.2

s+ 2

Let us determine the sampling rate and sampling period as follows:

!s = 0.3⇥ 20 = 6[rad/s] ! fs =
!s

2⇡
⇡ 1[Hz] ! T = 1[s]
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The MPZ digitization yields

Dd(z) = Kd
1� e�0.2z�1

1� e�2z�1
= Kd

1� 0.818z�1

1� 0.135z�1

where the final value theorem gives

0.81
0.2

2
= Kd

1� 0.818

1� 0.135
! Kd = 0.385

The difference equation becomes

u(k) = 0.135u(k � 1) + 0.385[e(k)� 0.818e(k � 1)]

For the step responses,
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• (8.3.4) Modified Matched Pole-Zero (MMPZ) Method

1. Modify Step 2 in the MPZ so that the numerator is of lower order than denominator by 1.
For example, if

Dc(s) = Kc
s+ a

s(s+ b)

we skip Step 2 to get

Dd(z) = Kd
z�1(1� e�aTz�1)

(1� z�1)(1� e�bTz�1)
where Kd = Kc

a

b

✓
1� e�bT

1� e�aT

◆

We can see the difference equation as follow:

u(k) = (1 + e�bT )u(k � 1)� e�bTu(k � 2) +Kd[e(k � 1)� e�aTe(k � 2)]

where it makes use of e(k � 1) that are one cycle old, not e(k).
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• (8.3.5) Comparison of Digital Approximation Methods

1. Let us compare four approximation methods with the sampling rate

Dc(s) =
5

s+ 5

2. Tustin’s method

Dd(z) =
5

2
T
1�z�1

1+z�1 + 5
=

5T (1 + z�1)

2(1� z�1) + 5T (1 + z�1)
=

5T + 5Tz�1

(2 + 5T )� (2� 5T )z�1

=

✓
5T

2 + 5T

◆
1 + z�1

1�
�
2�5T
2+5T

�
z�1

3. ZOH

Dd(z) = (1� z�1)Z

✓
Dc(s)

s

◆
= (1� z�1)Z

✓
5

s(s+ 5)

◆
= (1� z�1)

(1� e�5T )z�1

(1� z�1)(1� e�5Tz�1)

= (1� e�5T )
z�1

1� e�5Tz�1

4. MPZ

Dd(z) = Kd
(1 + z�1)

1� e�5Tz�1
where Kd

2

1� e�5T
= 1

=

✓
1� e�5T

2

◆
1 + z�1

1� e�5Tz�1
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5. MMPZ

Dd(z) = Kd
z�1

1� e�5Tz�1
where Kd

1

1� e�5T
= 1

= (1� e�5T )
z�1

1� e�5Tz�1

6. It is noted that Tustin and MPZ bring the similar structures each other, while ZOH and
MMPZ show the similar structures, as shown in Table 8.2

7. Tustin and MPZ methods show a notch at !s/2 because of their zero at z = �1 from 1 + z�1

term.
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• (8.3.6) Applicability Limits of the Discrete Equivalent Design Method

1. The system can often be unstable for rates slower than approximately 5!bd, and
2. the damping would be degraded significantly for rates slower than about 10!bd

3. At sample rates � 20!bd, design by discrete equivalent yields reasonable results, and
4. at sample rates of 25 times the bandwidth or higher, discrete equivalents can be used with

confidence.
5. ZOH brings T/2 delay in the control system. A method to account for the T/2 delay is to

include an approximation of the delay into the original plant model:

GZOH(s) =
2/T

s+ 2/T
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