
9 Introduction of the Reference Input with the Estimator
• Good disturbance rejection and good command following need to be taken into account in design-

ing a control system.

• Let us consider the plant and controller equations for the full-order estimator:

Plant ẋ = Ax+Bu y = Cx

Controller ˙̂x = (A� BK � LC)x̂+ Ly u = �Kx̂
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• (7.9.1) General Structure for the Reference Input

1. Given a reference input r(t), the most general linear way to introduce r into the system equa-
tions is to add terms proportional to it in the controller equations. Let us add N̄r and Mr
as follows:

Controller ˙̂x = (A� BK � LC)x̂+ Ly +Mr u = �Kx̂+ N̄r

where N̄ is a scalar and M is an n⇥ 1 vector
2. It is clear that neither M nor N̄ affects the characteristic equation of the combined controller-

estimator system. In the TF from r to y, the selection of M and N̄ will affect only the zeros
of transmission from r to y. As a consequence, it can affect the transient response but not
the stability.

3. There are three strategies for choosing M and N̄ :
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a) (Autonomous estimator) Select M and N̄ so that the state estimator error is independent
of r.

– Estimation error equation becomes

ẋ� ˙̂x = Ax+B[�Kx̂+ N̄r]� [(A� BK � LC)x̂+ Ly +Mr]

˙̃x = (A� LC)x̃+BN̄r �Mr

– If r is not to appear in the above, then we should choose

) M = BN̄

– A a result,

˙̂x = (A� LC)x̂+Bu+ Ly u = �Kx̂+ N̄r

for practical use, the actuator saturation should be considered as shown in the figure
7.48(b).
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b) (Tracking error estimator) Select M and N̄ so that only the tracking error e = r � y is
used in the control as shown in figure 7.48(c).

– The requirement is satisfied if we select

N̄ = 0 and M = �L

– Then the estimator equation is

˙̂x = (A� BK � LC)x̂+ L(y � r) u = �Kx̂

– The compensator in this case is a standard lead compensator in the forward path.
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c) (Zero assignment estimator) Select M and N̄ so that n of the zeros of the overall TF are
assigned at places of the designer’s choice.

– Reconsider the general form shown in figure 7.48(a)
– From the general form of controller, the equation for a zero from r to u with y = 0 is

given by
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– Here we have to select 1
N̄
M for a desired zero polynomial �(s) in the TF from r to u

– The zeros influence the transient response significantly
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d) (Truxal’s formula) If the system is Type 1, then the steady-state error to a step input
will be zero and to a unit-ramp input will be

ess =
1

Kv
=

X 1

zi
�

X 1

pi

where Kv is the velocity constant, pi denotes the closed-loop poles and zi the closed-loop
zeros.

– If kzi � pik ⌧ 1, then the effect of this pole-zero pair on the dynamic response will be
small

– Even though zi�pi is small, it is possible for 1
zi
�

1
pi

to be substantial and thus to have
a significant influence on Kv.

– Application of above two guidelines to the selection of �(s), and hence of M and N̄ ,
results in a lag-network design.
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4. (Example 7.33) Design a controller using pole placement so that both poles are at s = �2±j2
and the system has a velocity constant Kv = 10.

G(s) =
1

s(s+ 1)
) ẋ =
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#
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0

1

#
u
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h
1 0

i
x

The feedback gain K = [k1 k2] of u = �Kx is

det[sI � A+BK] = det

"
s �1

k1 s+ 1 + k2

#
= s2 + (1 + k2)s+ k1 = ↵c(s) = s2 + 4s+ 8 ! K = [8 3]

Let us apply the zero placement along with Truxal’s formula.
a) First we must select the estimator pole p3 and the zero z3 for Kv = 10. Also, we want to

keep z3 � p3 small so that there is little effect on the dynamic response, and yet 1
z3
�

1
p3

be large enough to increase the value of Kv.
b) For example, p3 = �0.1, let us solve the following:
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191



Thus we have

1

z3
= �9.9�

1

2
= �10.4 ! z3 = �0.096

c) Finally, we can design the overall TF as follows:

Y (s)

R(s)
=

8.32(s+ 0.096)

(s2 + 4s+ 8)(s+ 0.1)

5. Let us summarize our findings on the effect of introducing the reference input. When the
reference input signal is included in the controller, the overall TF of the closed-loop system
is

T (s) =
Y (s)

R(s)
= Ks

�(s)b(s)

↵c(s)↵e(s)

where
– Ks is the total system gain
– ↵c(s) results in a control gain K such that det[sI � A+BK] = ↵c(s)

– ↵e(s) results in an estimator gain L such that det[sI � A+ LC] = ↵e(s)

– �(s) is a zero polynomial to be designed by M and N̄

– b(s) is the plant zeros (G(s) = b(s)
a(s)) which are not moved by this technique and remain as

part of the closed-loop TF.
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• (7.9.2) Selecting the Gain

Plant ẋ = Ax+Bu y = Cx

Controller ˙̂x = (A� BK � LC)x̂+ Ly +Mr u = �Kx̂+ N̄r

1. If we choose a first method (autonomous estimator), with N̄ = Nu +KNx and M = BN̄ , the
control is given by

˙̂x = (A� LC)x̂+Bu+ Ly u = �Kx̂+ N̄r = Nur �K(x̂�Nxr)

This is the most common choice.
2. If we use the second method (tracking error estimator), the result is trivial; recall that N̄ = 0

and M = �L for the error control.

˙̂x = (A� BK � LC)x̂+ L(y � r) u = �Kx̂

3. If we use the third method (zero assignment estimator), we pick N̄ such that the overall
closed-loop DC gain is unity. The closed-loop system becomes

ẋ = Ax� BKx̂+BN̄r = (A� BK)x+BKx̃+BN̄r

˙̃x = Ax� BKx̂+BN̄r � (A� BK � LC)x̂� LCx�Mr = (A� LC)x̃+ (BN̄ �M)r

y = Cx
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In other expression, we have
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where M
N̄

is the outcome of selecting zero locations from �(s). The closed-loop system has
unity DC gain if
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If we solve the above, we have
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)]

where 1
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M is chosen from the desired zero polynomial
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