9 Introduction of the Reference Input with the Estimator

e Good disturbance rejection and good command following need to be taken into account in design-
ing a control system.

e Let us consider the plant and controller equations for the full-order estimator:

Plant & = Az + Bu y=Cx
Controller % = (A— BK — LC)i + Ly u=—Ki
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e (7.9.1) General Structure for the Reference Input

1. Given a reference input (), the most general linear way to introduce r into the system equa-
tions is to add terms proportional to it in the controller equations. Let us add Nr and Mr
as follows:

Controller # = (A— BK — LC)i + Ly + Mr u=—Kz%+ Nr

where N is a scalar and M is an n x 1 vector

2. It is clear that neither M nor N affects the characteristic equation of the combined controller-
estimator system. In the TF from r to y, the selection of M and N will affect only the zeros
of transmission from r to y. As a consequence, it can affect the transient response but not
the stability.

3. There are three strategies for choosing M and N:
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a) (Autonomous estimator) Select M and N so that the state estimator error is independent

of r.

- Estimation error equation becomes

i —1=Axr+ B[-Ki+ Nr]— [(A— BK — LC)& + Ly + Mr]

T =(A—LC)Z+ BNr— Mr

— If r is not to appear in the above, then we should choose

— A a result,

M = BN

z=(A—LC)&+ Bu+ Ly

u=—Ki+ Nr

for practical use, the actuator saturation should be considered as shown in the figure

7.48(b).
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b) (Tracking error estimator) Select M/ and N so that only the tracking error ¢ = r — y is
used in the control as shown in figure 7.48(c).
— The requirement is satisfied if we select
N=0 and M=-L
— Then the estimator equation is

t=(A—BK—LC)i+ Ly —7) u=—Ki

— The compensator in this case is a standard lead compensator in the forward path.
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c) (Zero assignment estimator) Select M and N so that n of the zeros of the overall TF are
assigned at places of the designer’s choice.

— Reconsider the general form shown in figure 7.48(a)
— From the general form of controller, the equation for a zero from r to v with y =0 is

given by
s —A+BK +LC —M s] — A+ BK +LC —LiM
det _ | =det
K N ] K 1
(s —A+BK+LC—1MK —L1Mm
= det ° N N
0 1
i 1
v(s) = det 8[—A+BK+LC—ﬁMK] =0

— Here we have to select %M for a desired zero polynomial «(s) in the TF from r to u
— The zeros influence the transient response significantly
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d) (Truxal’s formula) If the system is Type 1, then the steady-state error to a step input
will be zero and to a unit-ramp input will be

1 1 1
IR

where K, is the velocity constant, p; denotes the closed-loop poles and z; the closed-loop
Zeros.

— If ||z; — pi|]| < 1, then the effect of this pole-zero pair on the dynamic response will be
small

— Even though z; — p; is small, it is possible for i—}% to be substantial and thus to have
a significant influence on K,.

— Application of above two guidelines to the selection of 7(s), and hence of M and N,
results in a lag-network design.
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4. (Example 7.33) Design a controller using pole placement so that both poles are at s = —2+ 52
and the system has a velocity constant K, = 10.

Gls) = —. Lo |0
KPRy SR O R Y
y=1 O}x

The feedback gain K = [k; ko] of u=—Kuz is

S —1

det[s] — A+ BK]| = det
kl S—|—1+k2

=P+ (1+k)s+k=afs)=s"+4s+8 — K =83

Let us apply the zero placement along with Truxal’s formula.

a) First we must select the estimator pole p; and the zero z3 for K, = 10. Also, we want to
keep z3 — p3 small so that there is little effect on the dynamic response, and yet i — pis
be large enough to increase the value of K,.

b) For example, p; = —0.1, let us solve the following:

1 1 1 1 1 1
K, 21 Z9 23 P1 P2 D3
1 1 1 1 1 1
oo o0 23 —242) —2-25 =01 10
1 -2 -2 —24+29
— 040+ —— ek T S
23 8 8
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Thus we have

1 1
—=-99_—-_=-104 — Z3 = —0.096
z3 2

c) Finally, we can design the overall TF as follows:

Y(s)  8.32(s+0.096)
R(s) (s244s+8)(s+0.1)

5. Let us summarize our findings on the effect of introducing the reference input. When the
reference input signal is included in the controller, the overall TF of the closed-loop system
is

where

- K, is the total system gain

- a,(s) results in a control gain K such that det[s] — A+ BK]| = a.(s)

- a.(s) results in an estimator gain L such that det[s/ — A + LC| = a.(s)

- 7(s) is a zero polynomial to be designed by M and N

- b(s) is the plant zeros (G(s) = %) which are not moved by this technique and remain as
part of the closed-loop TF.
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e (7.9.2) Selecting the Gain

Plant & = Ax + Bu y=Cx
Controller = (A— BK — LC)&+ Ly + Mr u=—Ki+ Nr

1. If we choose a first method (autonomous estimator), with N = N, + KN, and M = BN, the
control is given by

2= (A—LC)i+ Bu+ Ly u=—Ki+ Nr= N, — K& — N,r)

This is the most common choice.

2. If we use the second method (tracking error estimator), the result is trivial; recall that N = 0
and M = —L for the error control.

t=(A—BK—LC)i+ L(y—r) u=—Ki

3. If we use the third method (zero assignment estimator), we pick N such that the overall
closed-loop DC gain is unity. The closed-loop system becomes

i = Ar — BKi + BNr = (A — BK)x + BK% + BNr
&= Ar — BKi+ BNr — (A— BK — LO)# — LCx — Mr = (A — LC)Z + (BN — M)r
y=Cx
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In other expression, we have

X

0 A—-LC

;

where % is the outcome of selecting zero locations from +(s). The closed-loop system has
unity DC gain if

B —

T

F] A — BK BK

SIS

-l

S

_ s —A+BK  —BK B ]
lim {C’ 0} N=1
s=0 0 sI — A+ LC B-%
If we solve the above, we have
_ 1
N = A BR) Bl -K@A—-LO)(B_ X
(A-BK)"'B[l - K(A—-LC)"/(B - %)

where %M is chosen from the desired zero polynomial

M
v(s) = det (SI—A+BK+LC—WK>
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